Goto

Collaborating Authors

Building a More Intelligent Enterprise

#artificialintelligence

In coming years, the most intelligent organizations will need to blend technology-enabled insights with a sophisticated understanding of human judgment, reasoning, and choice. Those that do this successfully will have an advantage over their rivals. To succeed in the long run, businesses need to create and leverage some kind of sustainable competitive edge. This advantage can still derive from such traditional sources as scale-driven lower cost, proprietary intellectual property, highly motivated employees, or farsighted strategic leaders. But in the knowledge economy, strategic advantages will increasingly depend on a shared capacity to make superior judgments and choices.


Building a More Intelligent Enterprise

#artificialintelligence

In coming years, the most intelligent organizations will need to blend technology-enabled insights with a sophisticated understanding of human judgment, reasoning, and choice. Those that do this successfully will have an advantage over their rivals. To succeed in the long run, businesses need to create and leverage some kind of sustainable competitive edge. This advantage can still derive from such traditional sources as scale-driven lower cost, proprietary intellectual property, highly motivated employees, or farsighted strategic leaders. But in the knowledge economy, strategic advantages will increasingly depend on a shared capacity to make superior judgments and choices.


Minds and machines: The art of forecasting in the age of artificial intelligence

#artificialintelligence

Two of today's major business and intellectual trends offer complementary insights about the challenge of making forecasts in a complex and rapidly changing world. Forty years of behavioral science research into the psychology of probabilistic reasoning have revealed the surprising extent to which people routinely base judgments and forecasts on systematically biased mental heuristics rather than careful assessments of evidence. These findings have fundamental implications for decision making, ranging from the quotidian (scouting baseball players and underwriting insurance contracts) to the strategic (estimating the time, expense, and likely success of a project or business initiative) to the existential (estimating security and terrorism risks). The bottom line: Unaided judgment is an unreliable guide to action. Consider psychologist Philip Tetlock's celebrated multiyear study concluding that even top journalists, historians, and political experts do little better than random chance at forecasting such political events as revolutions and regime changes.1 The second trend is the increasing ubiquity of data-driven decision making and artificial intelligence applications. Once again, an important lesson comes from behavioral science: A body of research dating back to the 1950s has established that even simple predictive models outperform human experts' ability to make predictions and forecasts. This implies that judiciously constructed predictive models can augment human intelligence by helping humans avoid common cognitive traps.


The art of forecasting in the age of artificial intelligence

#artificialintelligence

Two of today's major business and intellectual trends offer complementary insights about the challenge of making forecasts in a complex and rapidly changing world. Forty years of behavioral science research into the psychology of probabilistic reasoning have revealed the surprising extent to which people routinely base judgments and forecasts on systematically biased mental heuristics rather than careful assessments of evidence. These findings have fundamental implications for decision making, ranging from the quotidian (scouting baseball players and underwriting insurance contracts) to the strategic (estimating the time, expense, and likely success of a project or business initiative) to the existential (estimating security and terrorism risks). The bottom line: Unaided judgment is an unreliable guide to action. Consider psychologist Philip Tetlock's celebrated multiyear study concluding that even top journalists, historians, and political experts do little better than random chance at forecasting such political events as revolutions and regime changes.1 The second trend is the increasing ubiquity of data-driven decision making and artificial intelligence applications. Once again, an important lesson comes from behavioral science: A body of research dating back to the 1950s has established that even simple predictive models outperform human experts' ability to make predictions and forecasts. This implies that judiciously constructed predictive models can augment human intelligence by helping humans avoid common cognitive traps.


Realizing the full potential of AI in the workplace

#artificialintelligence

Artificial intelligence (AI) is one of the signature issues of our time, but also one of the most easily misinterpreted. The prominent computer scientist Andrew Ng's slogan "AI is the new electricity"2 signals that AI is likely to be an economic blockbuster--a general-purpose technology3 with the potential to reshape business and societal landscapes alike. Just as electricity transformed almost everything 100 years ago, today I actually have a hard time thinking of an industry that I don't think AI will transform in the next several years.4 Such provocative statements naturally prompt the question: How will AI technologies change the role of humans in the workplaces of the future? An implicit assumption shaping many discussions of this topic might be called the "substitution" view: namely, that AI and other technologies will perform a continually expanding set of tasks better and more cheaply than humans, while humans will remain employed to perform those tasks at which machines ...