Collaborating Authors

Clean your data with unsupervised machine learning – Towards Data Science


In this example we are faced with thousands of text articles scraped from both HMTL and PDF files. The quality of text returned is very much dependent on the scraping process. From sample-checking some of the results we know there are issues ranging from bad links, unreadable PDFs to items which have been successfully read-in but the content itself is complete garbage. The articles relate to Company Modern Slavery returns from this database: These now reside in a Pandas data frame with'meta data' on each item such as the company name and year of publication, alongside the text which has been scraped from the return: The python Missingno package is super-useful.

The Best Public Datasets for Machine Learning


First, a couple of pointers to keep in mind when searching for datasets. Kaggle: A data science site that contains a variety of externally contributed interesting datasets. You can find all kinds of niche datasets in its master list, from ramen ratings to basketball data to and even seattle pet licenses. Although the data sets are user-contributed, and thus have varying levels of cleanliness, the vast majority are clean. VisualData: Discover computer vision datasets by category, it allows searchable queries.

Data is the New Oil – Hacker Noon


Deep Learning is a revolutionary field, but for it to work as intended, it requires data. The area related to these big datasets is known as Big Data, which stands for the abundance of digital data. Data is as important for Deep Learning algorithms as the architecture of the network itself, i.e., the software. Acquiring and cleaning the data is one of the most valuable aspects of the work. Without data, the neural networks cannot learn.

Scraping 1000's of News Articles using 10 simple steps


Aim of this article is to scrape news articles from different websites using Python. Generally, web scraping involves accessing numerous websites and collecting data from them. However, we can limit ourselves to collect large amounts of information from a single source and use it as a dataset. Web Scraping is a technique employed to extract large amounts of data from websites whereby the data is extracted and saved to a local file in your computer or to a database in table (spreadsheet) format. So, I get motivated to do web scraping while working on my Machine-Learning project on Fake News Detection System.

The heroic Data Engineer - Lending a Helping Hand to Data Drowned Scientists - insideBIGDATA


A recent Forbes article on the 10 Predictions for AI, Big Data, and Analytics in 2018 states that Data engineer will become the hot new job title, displacing its sibling role of Data Scientist. Gil Press goes on to write that