Question: High Precision Computing in Python or R

I am trying to make some simulations of chaotic systems, for instance X(k) 4 X(k) (1 - X(k-1)) but I noticed that for all these systems, the loss of precision propagates exponentially, to the point that after 50 iterations, all values generated are completely wrong. I wrote some code in Perl using the BigNum library (providing hundreds of decimals accuracy) and it shows how dramatic standard arithmetic fails in this context.

Question: High Precision Computing in Python or R

I am trying to make some simulations of chaotic systems, for instance X(k) 4 X(k) (1 - X(k-1)) but I noticed that for all these systems, the loss of precision propagates exponentially, to the point that after 50 iterations, all values generated are completely wrong. I wrote some code in Perl using the BigNum library (providing hundreds of decimals accuracy) and it shows how dramatic standard arithmetic fails in this context.

Summit Achieves 445 Petaflops on New 'HPL-AI' Benchmark

Traditionally, supercomputer performance is measured using the High-Performance Linpack (HPL) benchmark, which is the basis for the Top500 list that biannually ranks world's fastest supercomputers. The Linpack benchmark tests a supercomputer's ability to conduct high-performance tasks (like simulations) that use double-precision math. On June's Top500 list, announced Monday, Summit's 148 Linpack petaflops land it first place by a comfortable margin. Using that same machine configuration, Oak Ridge National Laboratory (ORNL) and Nvidia have tested Summit on HPL-AI and gotten a result of 445 petaflops. While the HPL benchmark tests supercomputers' performance in double-precision math, AI is a rapidly growing use case for supercomputers -- and most AI models use mixed-precision math.

Microsoft Surface Precision Mouse review: A flagship mouse worthy of the Surface name

Microsoft's Surface Precision Mouse is a practical PC accessory for Surface owners, especially right-handed ones. Over a week of use, I found the cordless, six-button mouse comfortable and precise. I wasn't truly happy with it, however, until I downloaded Microsoft's hard-to-find Mouse and Keyboard Center app, which includes a cool but gimmicky ability to straddle multiple PCs.

Huang

The rectangle-packing problem consists of finding an enclosing rectangle of smallest area that can contain a given set of rectangles without overlap. Our new benchmark includes rectangles of successively higher precision, challenging the previous state-of-the-art, which enumerates all locations for placing rectangles, as well as all bounding box widths and heights up to the optimal box. We instead limit the rectangles' coordinates and bounding box dimensions to the set of subset sums of the rectangles' dimensions. We also dynamically prune values by learning from infeasible subtrees and constrain the problem by replacing rectangles and empty space with larger rectangles. Compared to the previous state-of-the-art, we test 4,500 times fewer bounding boxes on the high-precision benchmark and solve N 9 over two orders of magnitude faster. We also present all optimal solutions up to N 15, which requires 39 bits of precision to solve. Finally, on the open problem of whether or not one can pack a particular infinite series of rectangles into the unit square, we pack the first 50,000 such rectangles witha greedy heuristic and conjecture that the entire infinite series can fit..