Evaluating Model Selection Abilities of Performance Measures

AAAI Conferences

Model selection is an important task in machine learning and data mining. When using the holdout testing method to do model selection, a consensus in the machine learning community is that the same model selection goal should be used to identify the best model based on available data. However, following the preliminary work of (Rosset 2004), we show that this is, in general, not true under highly uncertain situations where only very limited data are available. We thoroughly investigate model selection abilities of different measures under highly uncertain situations as we vary model selection goals, learning algorithms and class distributions. The experimental results show that a measure's model selection ability is relatively stable to the model selection goals and class distributions. However, different learning algorithms call for different measures for model selection. For learning algorithms of SVM and KNN, generally the measures of RMS, SAUC, MXE perform the best. For learning algorithms of decision trees and naive Bayes, generally the measures of RMS, SAUC, MXE, AUC, APR have the best performance.

Bayesian feature selection with strongly-regularizing priors maps to the Ising Model

arXiv.org Machine Learning

Identifying small subsets of features that are relevant for prediction and/or classification tasks is a central problem in machine learning and statistics. The feature selection task is especially important, and computationally difficult, for modern datasets where the number of features can be comparable to, or even exceed, the number of samples. Here, we show that feature selection with Bayesian inference takes a universal form and reduces to calculating the magnetizations of an Ising model, under some mild conditions. Our results exploit the observation that the evidence takes a universal form for strongly-regularizing priors --- priors that have a large effect on the posterior probability even in the infinite data limit. We derive explicit expressions for feature selection for generalized linear models, a large class of statistical techniques that include linear and logistic regression. We illustrate the power of our approach by analyzing feature selection in a logistic regression-based classifier trained to distinguish between the letters B and D in the notMNIST dataset.

Robust and Parallel Bayesian Model Selection

arXiv.org Machine Learning

Effective and accurate model selection is an important problem in modern data analysis. One of the major challenges is the computational burden required to handle large data sets that cannot be stored or processed on one machine. Another challenge one may encounter is the presence of outliers and contaminations that damage the inference quality. The parallel "divide and conquer" model selection strategy divides the observations of the full data set into roughly equal subsets and perform inference and model selection independently on each subset. After local subset inference, this method aggregates the posterior model probabilities or other model/variable selection criteria to obtain a final model by using the notion of geometric median. This approach leads to improved concentration in finding the "correct" model and model parameters and also is provably robust to outliers and data contamination.

Network cross-validation by edge sampling

arXiv.org Machine Learning

Many models and methods are now available for network analysis, but model selection and tuning remain challenging. Cross-validation is a useful general tool for these tasks in many settings, but is not directly applicable to networks since splitting network nodes into groups requires deleting edges and destroys some of the network structure. Here we propose a new network cross-validation strategy based on splitting edges rather than nodes, which avoids losing information and is applicable to a wide range of network problems. We provide a theoretical justification for our method in a general setting, and in particular show that the method has good asymptotic properties under the stochastic block model. Numerical results on simulated networks show that our approach performs well for a number of model selection and parameter tuning tasks. We also analyze a citation network of statisticians, with meaningful research communities emerging from the analysis.

Models and Selection Criteria for Regression and Classification

arXiv.org Machine Learning

When performing regression or classification, we are interested in the conditional probability distribution for an outcome or class variable Y given a set of explanatoryor input variables X. We consider Bayesian models for this task. In particular, we examine a special class of models, which we call Bayesian regression/classification (BRC) models, that can be factored into independent conditional (y|x) and input (x) models. These models are convenient, because the conditional model (the portion of the full model that we care about) can be analyzed by itself. We examine the practice of transforming arbitrary Bayesian models to BRC models, and argue that this practice is often inappropriate because it ignores prior knowledge that may be important for learning. In addition, we examine Bayesian methods for learning models from data. We discuss two criteria for Bayesian model selection that are appropriate for repression/classification: one described by Spiegelhalter et al. (1993), and another by Buntine (1993). We contrast these two criteria using the prequential framework of Dawid (1984), and give sufficient conditions under which the criteria agree.