Goto

Collaborating Authors



Identifiable Phenotyping using Constrained Non-Negative Matrix Factorization

arXiv.org Machine Learning

This work proposes a new algorithm for automated and simultaneous phenotyping of multiple co-occurring medical conditions, also referred as comorbidities, using clinical notes from the electronic health records (EHRs). A basic latent factor estimation technique of non-negative matrix factorization (NMF) is augmented with domain specific constraints to obtain sparse latent factors that are anchored to a fixed set of chronic conditions. The proposed anchoring mechanism ensures a one-to-one identifiable and interpretable mapping between the latent factors and the target comorbidities. Qualitative assessment of the empirical results by clinical experts suggests that the proposed model learns clinically interpretable phenotypes while being predictive of 30 day mortality. The proposed method can be readily adapted to any non-negative EHR data across various healthcare institutions.


Reinforcement Learning in Healthcare: A Survey

arXiv.org Artificial Intelligence

As a subfield of machine learning, \emph{reinforcement learning} (RL) aims at empowering one's capabilities in behavioural decision making by using interaction experience with the world and an evaluative feedback. Unlike traditional supervised learning methods that usually rely on one-shot, exhaustive and supervised reward signals, RL tackles with sequential decision making problems with sampled, evaluative and delayed feedback simultaneously. Such distinctive features make RL technique a suitable candidate for developing powerful solutions in a variety of healthcare domains, where diagnosing decisions or treatment regimes are usually characterized by a prolonged and sequential procedure. This survey will discuss the broad applications of RL techniques in healthcare domains, in order to provide the research community with systematic understanding of theoretical foundations, enabling methods and techniques, existing challenges, and new insights of this emerging paradigm. By first briefly examining theoretical foundations and key techniques in RL research from efficient and representational directions, we then provide an overview of RL applications in a variety of healthcare domains, ranging from dynamic treatment regimes in chronic diseases and critical care, automated medical diagnosis from both unstructured and structured clinical data, as well as many other control or scheduling domains that have infiltrated many aspects of a healthcare system. Finally, we summarize the challenges and open issues in current research, and point out some potential solutions and directions for future research.


Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project

Classics

Artificial intelligence, or AI, is largely an experimental science—at least as much progress has been made by building and analyzing programs as by examining theoretical questions. MYCIN is one of several well-known programs that embody some intelligence and provide data on the extent to which intelligent behavior can be programmed. As with other AI programs, its development was slow and not always in a forward direction. But we feel we learned some useful lessons in the course of nearly a decade of work on MYCIN and related programs. In this book we share the results of many experiments performed in that time, and we try to paint a coherent picture of the work. The book is intended to be a critical analysis of several pieces of related research, performed by a large number of scientists. We believe that the whole field of AI will benefit from such attempts to take a detailed retrospective look at experiments, for in this way the scientific foundations of the field will gradually be defined. It is for all these reasons that we have prepared this analysis of the MYCIN experiments.

The complete book in a single file.