Collaborating Authors

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.

A Review of Tracking, Prediction and Decision Making Methods for Autonomous Driving Machine Learning

The models are updated using a CNN, which ensures robustness to noise, scaling and minor variations of the targets' appearance. As with many other related approaches, an online implementation offloads most of the processing to an external server leaving the embedded device from the vehicle to carry out only minor and frequently-needed tasks. Since quick reactions of the system are crucial for proper and safe vehicle operation, performance and a rapid response of the underlying software is essential, which is why the online approach is popular in this field. Also in the context of ensuring robustness and stability, some authors apply fusion techniques to information extracted from CNN layers. It has been previously mentioned that important correlations can be drawn from deep and shallow layers which can be exploited together for identifying robust features in the data.

Machine Learning at the Network Edge: A Survey Machine Learning

Devices comprising the Internet of Things, such as sensors and small cameras, usually have small memories and limited computational power. The proliferation of such resource-constrained devices in recent years has led to the generation of large quantities of data. These data-producing devices are appealing targets for machine learning applications but struggle to run machine learning algorithms due to their limited computing capability. They typically offload input data to external computing systems (such as cloud servers) for further processing. The results of the machine learning computations are communicated back to the resource-scarce devices, but this worsens latency, leads to increased communication costs, and adds to privacy concerns. Therefore, efforts have been made to place additional computing devices at the edge of the network, i.e close to the IoT devices where the data is generated. Deploying machine learning systems on such edge devices alleviates the above issues by allowing computations to be performed close to the data sources. This survey describes major research efforts where machine learning has been deployed at the edge of computer networks.