Collaborating Authors

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.

An Approach for Time-aware Domain-based Social Influence Prediction Artificial Intelligence

Online Social Networks(OSNs) have established virtual platforms enabling people to express their opinions, interests and thoughts in a variety of contexts and domains, allowing legitimate users as well as spammers and other untrustworthy users to publish and spread their content. Hence, the concept of social trust has attracted the attention of information processors/data scientists and information consumers/business firms. One of the main reasons for acquiring the value of Social Big Data (SBD) is to provide frameworks and methodologies using which the credibility of OSNs users can be evaluated. These approaches should be scalable to accommodate large-scale social data. Hence, there is a need for well comprehending of social trust to improve and expand the analysis process and inferring the credibility of SBD. Given the exposed environment's settings and fewer limitations related to OSNs, the medium allows legitimate and genuine users as well as spammers and other low trustworthy users to publish and spread their content. Hence, this paper presents an approach incorporates semantic analysis and machine learning modules to measure and predict users' trustworthiness in numerous domains in different time periods. The evaluation of the conducted experiment validates the applicability of the incorporated machine learning techniques to predict highly trustworthy domain-based users.

The Impact of Annotation Guidelines and Annotated Data on Extracting App Features from App Reviews Machine Learning

Annotation guidelines used to guide the annotation of training and evaluation datasets can have a considerable impact on the quality of machine learning models. In this study, we explore the effects of annotation guidelines on the quality of app feature extraction models. As a main result, we propose several changes to the existing annotation guidelines with a goal of making the extracted app features more useful and informative to the app developers. We test the proposed changes via simulating the application of the new annotation guidelines and then evaluating the performance of the supervised machine learning models trained on datasets annotated with initial and simulated guidelines. While the overall performance of automatic app feature extraction remains the same as compared to the model trained on the dataset with initial annotations, the features extracted by the model trained on the dataset with simulated new annotations are less noisy and more informative to the app developers. Secondly, we are interested in what kind of annotated training data is necessary for training an automatic app feature extraction model. In particular, we explore whether the training set should contain annotated app reviews from those apps/app categories on which the model is subsequently planned to be applied, or is it sufficient to have annotated app reviews from any app available for training, even when these apps are from very different categories compared to the test app. Our experiments show that having annotated training reviews from the test app is not necessary although including them into training set helps to improve recall. Furthermore, we test whether augmenting the training set with annotated product reviews helps to improve the performance of app feature extraction. We find that the models trained on augmented training set lead to improved recall but at the cost of the drop in precision.

Artificial Intelligence : from Research to Application ; the Upper-Rhine Artificial Intelligence Symposium (UR-AI 2019) Artificial Intelligence

The TriRhenaTech alliance universities and their partners presented their competences in the field of artificial intelligence and their cross-border cooperations with the industry at the tri-national conference 'Artificial Intelligence : from Research to Application' on March 13th, 2019 in Offenburg. The TriRhenaTech alliance is a network of universities in the Upper Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, and Offenburg, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.