From Data Analysis to Machine Learning


This article was originally posted here, by Mubashir Qasim. In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite for machine learning is data analysis, not math. One of the main reasons for making this statement, is that data scientists spend an inordinate amount of time on data analysis. The traditional statement is that data scientists "spend 80% of their time on data preparation." While I think that this statement is essentially correct, a more precise statement is that you'll spend 80% of your time on getting data, cleaning data, aggregating data, reshaping data, and exploring data using exploratory data analysis and data visualization.

Internet of Things and Bayesian Networks


As big data becomes more of cliche with every passing day, do you feel Internet of Things is the next marketing buzzword to grapple our lives. So what exactly is Internet of Thing (IoT) and why are we going to hear more about it in the coming days. Internet of thing (IoT) today denotes advanced connectivity of devices,systems and services that goes beyond machine to machine communications and covers a wide variety of domains and applications specifically in the manufacturing and power, oil and gas utilities. An application in IoT can be an automobile that has built in sensors to alert the driver when the tyre pressure is low. Built-in sensors on equipment's present in the power plant which transmit real time data and thereby enable to better transmission planning,load balancing.

To Improve Customer Service Robots Enable Humans - InformationWeek


Companies today have a customer service problem, and fixing it is more complicated than flashing an eager smile. Consumer-facing businesses are grappling with how best to meet the fickle expectations of real people in an increasingly automated and digital world. At the center of the issue are automated customer service systems, also called "virtual agents." These agents are software programs designed to help customers answer questions, perform basic tasks, or solve problems without talking to an actual person. We've all used them, and in many cases they work great.

Azure Data Factory v2: Hands-on overview


The second major version of Azure Data Factory, Microsoft's cloud service for ETL (Extract, Transform and Load), data prep and data movement, was released to general availability (GA) about two months ago. Cloud GAs come so fast and furious these days that it's easy to be jaded. But data integration is too important to overlook, and I wanted to examine the product more closely. Roughly thirteen years after its initial release, SQL Server Integration Services (SSIS) is still Microsoft's on-premises state of the art in ETL. It's old, and it's got tranches of incremental improvements in it that sometimes feel like layers of paint in a rental apartment.

BAFI 2018 : Business Analytics in Finance and Industry


Conference Topics Topics at this conference include, but are not limited to: Business Analytics - Methods: Dimensionality Reduction, Feature Extraction, and Feature Selection Supervised, Semi-Supervised, and Unsupervised Methods Statistical Learning Theory Online Learning, Data Stream Mining, and Dynamic Data Mining Graph Mining and Semi-Structured Data patial and Temporal Data Mining Deep Learning and Neural Network Research Large Scale Data Mining Uncertainty Modeling in Data Mining Business Analytics - Applications: Credit Scoring and Financial Modeling Forecasting Fraud Detection Web Intelligence and Information Retrieval Marketing, Business Intelligence, and e-Commerce Decision Analysis and Decision Support Systems Social Network Analysis Privacy-preserving Data Mining and Privacy-related Issue Text Mining, Sentiment Analysis, and Opinion Mining Important Dates July 31, 2017: Deadline for submission of extended abstracts August 15, 2017: Accept/reject decision November 15, 2017: Deadline for early registration January 17-19, 2018: BAFI 2018 *Only one contributed abstract is accepted from the same presenting author. Submission Guidelines Authors are requested to submit a 600 word abstract in English using the platform available at the EasyChair system. Please do not attach any additional files at this time.