Anomaly detection is the next big thing in digital business Anodot

#artificialintelligence

In today's competitive market, digital businesses such as fintech, ad tech, media and others are always on the lookout for the next big thing to help streamline their business processes. These businesses are constantly generating new data and often have systems and people in place to monitor what is going on. For example, within one company, you might find an IT group monitoring network performance while someone in product management watching page response time and user experience while marketing analysts track conversions per campaign and other KPIs. It is no secret that anomalies in one area often affect performance in other areas, but it is difficult for the association to be made if all the departments are operating independently of one another. In addition, most of the available tools for this type of monitoring look at what has happened in the past, so there is a built-in delay between when something important happens, and when it may (or may not) be discovered via the monitoring process.


Anomaly detection: Machine learning for real-time decision making

#artificialintelligence

Ever since the rise of big data enterprises of all sizes have been in a state of uncertainty. Today we have more data available than ever before, but few have been able to implement the procedures to turn this data into insights. To the human eye, there is just too much data to process. Tim Keary looks at anomaly detection in this first of a series of articles. Unmanageable datasets have become a problem as organizations are needing to make faster decision in real-time.


Anomaly Detection Techniques in Focus: Multivariate and Univariate Anodot

#artificialintelligence

In our previous post, we explained what time series data is and provided some details as to how the Anodot time series anomaly detection system is able to spot anomalies in time series data. We also discussed the importance of choosing a model for a metric's normal behavior which included any and all seasonal patterns in the metric, and the specific algorithm which Anodot uses to find seasonal patterns. At the end of that post we said it's possible to get a sense of the bigger picture from a lot of individual anomalies. Conciseness is a requirement of any large-scale anomaly detection system because monitoring millions of metrics is guaranteed to generate a flood of reported anomalies, even if there are zero false positives. Achieving conciseness in this context is analogous to distilling the many individual symptoms into a single diagnosis, in much the same way that a mechanic might diagnose a car problem by observing the pitch, volume, and duration of all the sounds it makes, in addition to watching all the dials and indicator lights on the dashboard.


2d5dZnf

#artificialintelligence

Some of the popular anomaly detection techniques are Density-based techniques (k-nearest neighbor,local outlier factor,Subspace and correlation-based, outlier detection, One class support vector machines, Replicator neural networks, Cluster analysis-based outlier detection, Deviations from association rules and frequent itemsets, Fuzzy logic based outlier detection and Ensemble techniques. RapidMiner provides an integrated environment for machine learning, data mining, text mining, predictive analytics and business analytics. Scikit-learn is an open source machine learning library for the Python programming language.It features various classification, regression and clustering algorithms including support vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy. You may also live to read, Top Business Intelligence companies, Open Source and Free Business Intelligence Solutions, Cloud – SaaS – OnDemand Business Intelligence Solutions, Top Free Extract, Transform, and Load, ETL Software, Freemium Cloud Business Intelligence Solutions, Top Embedded Analytics Business Intelligence Software, Top Dashboard Software, and Top Data Visualization Software.


The Growing Role of Machine Learning in Monitoring - DZone AI

#artificialintelligence

When does a buzzword stop being a buzzword? In the world of IT and software development, we are all too used to having terms and concepts thrown around left, right, and center. At some point, though, widespread adoption of the technology and platforms behind these buzzwords turns them into best practices and realities in the field. While the adoption of machine learning in DevOps is relatively slow compared to other industries, the potential is huge. To start understanding what has to gain from this rapidly developing field, one needs only to look at the world of monitoring and log analysis, where machine learning can be used to alleviate some of the main pain points experienced by DevOps teams -- namely, the analysis of vast volumes of data and the extraction of actionable insights from this data.