Neural Educational Recommendation Engine (NERE)

arXiv.org Machine Learning

Quizlet is the most popular online learning tool in the United States, and is used by over 2/3 of high school students, and 1/2 of college students. With more than 95% of Quizlet users reporting improved grades as a result, the platform has become the de-facto tool used in millions of classrooms. In this paper, we explore the task of recommending suitable content for a student to study, given their prior interests, as well as what their peers are studying. We propose a novel approach, i.e. Neural Educational Recommendation Engine (NERE), to recommend educational content by leveraging student behaviors rather than ratings. We have found that this approach better captures social factors that are more aligned with learning. NERE is based on a recurrent neural network that includes collaborative and content-based approaches for recommendation, and takes into account any particular student's speed, mastery, and experience to recommend the appropriate task. We train NERE by jointly learning the user embeddings and content embeddings, and attempt to predict the content embedding for the final timestamp. We also develop a confidence estimator for our neural network, which is a crucial requirement for productionizing this model. We apply NERE to Quizlet's proprietary dataset, and present our results. We achieved an R^2 score of 0.81 in the content embedding space, and a recall score of 54% on our 100 nearest neighbors. This vastly exceeds the recall@100 score of 12% that a standard matrix-factorization approach provides. We conclude with a discussion on how NERE will be deployed, and position our work as one of the first educational recommender systems for the K-12 space.


An Online Learning Method for Improving Over-subscription Planning

AAAI Conferences

Despite the recent resurgence of interest in learning methods for planning, most such efforts are still focused exclusively on classical planning problems. In this work, we investigate the effectiveness of learning approaches for improving over-subscription planning, a problem that has received significant recent interest. Viewing over-subscription planning as a domain-independent optimization problem, we adapt the STAGE (Boyan and Moore 2000) approach to learn and improve the plan search. The key challenge in our study is how to automate the feature generation process. In our case, we developed and experimented with a relational feature set, based on Taxonomic syntax as well as a propositional feature set, based on ground-facts. The feature generation process and training data generation process are all automatic, making it a completely domain-independent optimization process that takes advantage of online learning. In empirical studies, our proposed approach improved upon the baseline planner for over-subscription planning on many of the benchmark problems.


Software Called Aristo Can Take on High School Science Exams

AITopics Original Links

During which season of the year would a rabbit's fur be thickest? A computer program called Aristo can tell you because it read about bears growing thicker pelts during winter in a fourth-grade study guide, and it knows rabbits are mammals, too. Aristo is being developed by researchers at the Allen Institute for Artificial Intelligence in Seattle, who want to give machines a measure of common sense about the world. The institute's CEO, Oren Etzioni, says the best way to benchmark the development of their digital offspring is to use tests designed for schoolchildren. He's trying to convince other AI researchers to adopt standardized school tests as a way to measure progress in the field.


Modeling Player Engagement with Bayesian Hierarchical Models

AAAI Conferences

Modeling player engagement is a key challenge in games. However, the gameplay signatures of engaged players can be highly context-sensitive, varying based on where the game is used or what population of players is using it. Traditionally, models of player engagement are investigated in a particular context, and it is unclear how effectively these models generalize to other settings and populations. In this work, we investigate a Bayesian hierarchical linear model for multi-task learning to devise a model of player engagement from a pair of datasets that were gathered in two complementary contexts: a Classroom Study with middle school students and a Laboratory Study with undergraduate students. Both groups of players used similar versions of Crystal Island, an educational interactive narrative game for science learning. Results indicate that the Bayesian hierarchical model outperforms both pooled and context-specific models in cross-validation measures of predicting player motivation from in-game behaviors, particularly for the smaller Classroom Study group. Further, we find that the posterior distributions of model parameters indicate that the coefficient for a measure of gameplay performance significantly differs between groups. Drawing upon their capacity to share information across groups, hierarchical Bayesian methods provide an effective approach for modeling player engagement with data from similar, but different, contexts.


Online Learning of k-CNF Boolean Functions

AAAI Conferences

This paper revisits the problem of learning a k-CNF Boolean function from examples, for fixed k, in the context of online learning under the logarithmic loss. We give a Bayesian interpretation to one of Valiant’s classic PAC learning algorithms, which we then build upon to derive three efficient, online, probabilistic, supervised learning algorithms for predicting the output of an unknown k-CNF Boolean function. We analyze the loss of our methods, and show that the cumulative log-loss can be upper bounded by a polynomial function of the size of each example.