SS93-01-021.pdf

AAAI Conferences

A CASE-BASED MODEL OF CREATIVITY SCOT'[" R. TURNER Department of Computer Science University of California, Los Angeles Los Angeles CA 90024 USA Abstract Creativity - creating new solutions to problems - is an integral part of the problem-solving process. This paper presents a cognitive model of creativity in which a case-based problem-solver is augmented with (1) a creative drive and (2) a set of creativity heuristics. New solutions are discovered by solving a slightly different problem and adapting that solution to the original problem. By repeating this process, a creative problem-solver can discover new solutions that are novel, useful and very different from known solutions. This model has been implemented in a computer program called MINSTREL. MINSTREL has been used for planning and problem-solving, to tell stories, and to invent mechanical devices. 1 Introduction Creativity is an important element of human cognition. We all invent on a daily basis: we fix cars using spare change and bailing wire, invent jokes based on the latest domestic crisis, and make up bedtime stories for our children. The ability to invent original, useful solutions to problems is a fundamental process of human thought. To understand human cognition, we must understand the processes of creativity: the goals that drive people to create and the mechanisms they use to invent novel and useful solutions to their problems. This paper presents a model of creative reasoning as an extension to case-based problem-solving.


Modeling Design Process

AI Magazine

This article discusses building a computable design process model, which is a prerequisite for realizing intelligent computer-aided design systems. First, we introduce general design theory, from which a descriptive model of design processes is derived. In this model, the concept of metamodels plays a crucial role in describing the evolutionary nature of design. Second, we show a cognitive design process model obtained by observing design processes using a protocol analysis method. We then discuss a computable model that can explain most parts of the cognitive model and also interpret the descriptive model. In the computable model, a design process is regarded as an iterative logical process realized by abduction, deduction, and circumscription. We implemented a design simulator that can trace design processes in which design specifications and design solutions are gradually revised as the design proceeds.


A Cognitive Model of Crowd Behavior Based on Social Comparison Theory

AAAI Conferences

Modeling crowd behavior is an important challenge for cognitive modelers. Models of crowd behavior facilitate analysis and prediction of the behavior of groups of people, who are in close geographical or logical states, and that are affected by each other's presence and actions. Existing models of crowd behavior, in a variety of fields, leave many open challenges. In particular, psychological models often offer only qualitative description, and do not easily permit algorithmic replication, while computer science models are often simplistic, treating agents as simple deterministic particles. We propose a novel model of crowd behavior, based on Festinger's Social Comparison Theory (SCT), a social psychology theory known and expanded since the early 1950's. We propose a concrete algorithmic framework for SCT, and evaluate its implementations in several crowd behavior scenarios. We show that our SCT model produces improved results compared to base models from the literature. We also discuss an implementation of SCT in the Soar cognitive architecture, and the question this implementation raises as to the role of social reasoning in cognitive architectures.


Multimodal Cognitive Architecture: Making Perception More Central to Intelligent Behavior

AAAI Conferences

I propose that the notion of cognitive state be broadened from the current predicate-symbolic, Language-of-Thought framework to a multi-modal one, where perception and kinesthetic modalities participate in thinking. In contrast to the roles assigned to perception and motor activities as modules external to central cognition in the currently dominant theories in AI and Cognitive Science, in the proposed approach, central cognition incorporates parts of the perceptual machinery. I motivate and describe the proposal schematically, and describe the implementation of a bimodal version in which a diagrammatic representation component is added to the cognitive state. The proposal explains our rich multimodal internal experience, and can be a key step in the realization of embodied agents. The proposed multimodal cognitive state can significantly enhance the agent's problem solving. Note: Memory, as well as the information retrieved from memory and from perception, represented in a predicate-symbolic form.