Honor Uses Machine Learning to Refine Home Care Operations


Home care agencies might want to think twice about how they handle workers who are chronically late to client visits. "When we started Honor, we thought, clearly, if a care pro is late, that's terrible," Seth Sternberg, CEO of the San Francisco-based company, told Home Health Care News. "And then we learned that's not true." That counterintuitive lesson about late workers came from analyzing data gathered through Honor's proprietary technology platform. About three years after launching, Honor now is looking closely at its data and adjusting operations accordingly, in a variety of ways.

Employee turnover prediction and retention policies design: a case study

arXiv.org Machine Learning

This paper illustrates the similarities between the problems of customer churn and employee turnover. An example of employee turnover prediction model leveraging classical machine learning techniques is developed. Model outputs are then discussed to design \& test employee retention policies. This type of retention discussion is, to our knowledge, innovative and constitutes the main value of this paper.

Interpretable Machine Learning Algorithms with Dalex and H2O


As advanced machine learning algorithms are gaining acceptance across many organizations and domains, machine learning interpretability is growing in importance to help extract insight and clarity regarding how these algorithms are performing and why one prediction is made over another. There are many methodologies to interpret machine learning results (i.e. However, some recent R packages that focus purely on ML interpretability agnostic to any specific ML algorithm are gaining popularity. One such package is DALEX and this post covers what this package does (and does not do) so that you can determine if it should become part of your preferred machine learning toolbox. We implement machine learning models using H2O, a high performance ML toolkit. Let's see how DALEX and H2O work together to get the best of both worlds with high performance and feature explainability!

Predict Sales Turnover - Machine Learning Use Case - Prodoscore


As new technologies are discovered and developed, widespread adoption doesn't occur until viable business benefits can be identified and validated. Machine Learning, Cognitive Computing or Artificial Intelligence (depending on what you call it) is a "hot," interesting new technology development, and one that is quickly proceeding through the hype cycle to widespread adoption. As a practical use case, Machine Learning can now be used to gain new, perhaps even unexpected insights into sales team engagement to predict sales turnover.

Building Predictive Models for Customer Churn in Telecom using Machine Learning: A Real Project


Customer attrition, also known as customer churn, customer turnover, or customer defection, is the loss of clients or customers. Banks, telephone service companies, Internet service providers, pay TV companies, insurance firms, and alarm monitoring services, often use customer attrition analysis and customer attrition rates as one of their key business metrics (along with cash flow, EBITDA, etc.) because the cost of retaining an existing customer is far less than acquiring a new one. Companies from these sectors often have customer service branches which attempt to win back defecting clients, because recovered long-term customers can be worth much more to a company than newly recruited clients. Churn prediction is one of the most popular Big Data use cases in business. It consists of detecting customers who are likely to cancel a subscription to a service.