Artificial Intelligence and Risk Communication

AAAI Conferences

The challenges of effective health risk communication are well known. This paper provides pointers to the health communication literature that discuss these problems. Tailoring printed information, visual displays, and interactive multimedia have been proposed in the health communication literature as promising approaches. On-line risk communication applications are increasing on the internet. However, potential effectiveness of applications using conventional computer technology is limited. We propose that use of artificial intelligence, building upon research in Intelligent Tutoring Systems, might be able to overcome these limitations.


Bayesian Methods for Machine Learning Coursera

@machinelearnbot

About this course: Bayesian methods are used in lots of fields: from game development to drug discovery. They give superpowers to many machine learning algorithms: handling missing data, extracting much more information from small datasets. Bayesian methods also allow us to estimate uncertainty in predictions, which is a really desirable feature for fields like medicine. When Bayesian methods are applied to deep learning, it turns out that they allow you to compress your models 100 folds, and automatically tune hyperparametrs, saving your time and money. In six weeks we will discuss the basics of Bayesian methods: from how to define a probabilistic model to how to make predictions from it.


Neural Educational Recommendation Engine (NERE)

arXiv.org Machine Learning

Quizlet is the most popular online learning tool in the United States, and is used by over 2/3 of high school students, and 1/2 of college students. With more than 95% of Quizlet users reporting improved grades as a result, the platform has become the de-facto tool used in millions of classrooms. In this paper, we explore the task of recommending suitable content for a student to study, given their prior interests, as well as what their peers are studying. We propose a novel approach, i.e. Neural Educational Recommendation Engine (NERE), to recommend educational content by leveraging student behaviors rather than ratings. We have found that this approach better captures social factors that are more aligned with learning. NERE is based on a recurrent neural network that includes collaborative and content-based approaches for recommendation, and takes into account any particular student's speed, mastery, and experience to recommend the appropriate task. We train NERE by jointly learning the user embeddings and content embeddings, and attempt to predict the content embedding for the final timestamp. We also develop a confidence estimator for our neural network, which is a crucial requirement for productionizing this model. We apply NERE to Quizlet's proprietary dataset, and present our results. We achieved an R^2 score of 0.81 in the content embedding space, and a recall score of 54% on our 100 nearest neighbors. This vastly exceeds the recall@100 score of 12% that a standard matrix-factorization approach provides. We conclude with a discussion on how NERE will be deployed, and position our work as one of the first educational recommender systems for the K-12 space.


An Online Learning Method for Improving Over-subscription Planning

AAAI Conferences

Despite the recent resurgence of interest in learning methods for planning, most such efforts are still focused exclusively on classical planning problems. In this work, we investigate the effectiveness of learning approaches for improving over-subscription planning, a problem that has received significant recent interest. Viewing over-subscription planning as a domain-independent optimization problem, we adapt the STAGE (Boyan and Moore 2000) approach to learn and improve the plan search. The key challenge in our study is how to automate the feature generation process. In our case, we developed and experimented with a relational feature set, based on Taxonomic syntax as well as a propositional feature set, based on ground-facts. The feature generation process and training data generation process are all automatic, making it a completely domain-independent optimization process that takes advantage of online learning. In empirical studies, our proposed approach improved upon the baseline planner for over-subscription planning on many of the benchmark problems.


Coordinated Online Learning With Applications to Learning User Preferences

arXiv.org Machine Learning

We study an online multi-task learning setting, in which instances of related tasks arrive sequentially, and are handled by task-specific online learners. We consider an algorithmic framework to model the relationship of these tasks via a set of convex constraints. To exploit this relationship, we design a novel algorithm -- COOL -- for coordinating the individual online learners: Our key idea is to coordinate their parameters via weighted projections onto a convex set. By adjusting the rate and accuracy of the projection, the COOL algorithm allows for a trade-off between the benefit of coordination and the required computation/communication. We derive regret bounds for our approach and analyze how they are influenced by these trade-off factors. We apply our results on the application of learning users' preferences on the Airbnb marketplace with the goal of incentivizing users to explore under-reviewed apartments.