What Holding Back Machine Learning in Healthcare - Amit Ray

#artificialintelligence

What is holding back the large scale implementation of machine learning systems in healthcare and precision medicine? In this article Dr. Amit Ray, explains the key obstacles and challenges of implementing large-scale machine learning systems in healthcare. Dr. Ray argued that lack of deeper integration, incomplete understanding of the underlying molecular processes of disease it is intended to treat, may limit the progress of implementing large-scale machine learning based reliable systems in healthcare. Here, nine obstacles of present day machine learning systems in healthcare are discussed. Recently, machine learning algorithms, especially deep learning has shown impressive performance in many areas of medical science, especially in classifying imaging data in different clinical domains.


governance model for the application of AI in health care

#artificialintelligence

As the efficacy of artificial intelligence (AI) in improving aspects of healthcare delivery is increasingly becoming evident, it becomes likely that AI will be incorporated in routine clinical care in the near future. This promise has led to growing focus and investment in AI medical applications both from governmental organizations and technological companies. However, concern has been expressed about the ethical and regulatory aspects of the application of AI in health care. These concerns include the possibility of biases, lack of transparency with certain AI algorithms, privacy concerns with the data used for training AI models, and safety and liability issues with AI application in clinical environments. While there has been extensive discussion about the ethics of AI in health care, there has been little dialogue or recommendations as to how to practically address these concerns in health care. In this article, we propose a governance model that aims to not only address the ethical and regulatory issues that arise out of the application of AI in health care, but also stimulate further discussion about governance of AI in health care. Interest in AI has gone through cyclical phases of expectation and disappointment since the late 1950s because of poor-performing algorithms and computing infrastructure.1 However, the emergence of appropriate computing infrastructure, big data, and deep learning algorithms has reinvigorated interest in artificial intelligence (AI) technology and accelerated its adoption in various sectors.2 While recent approaches to AI, such as machine learning, have only been relatively recently applied to health care, the future looks promising because of the likelihood of improved healthcare outcomes.3,4


Artificial Intelligence in Clinical Health Care Applications: Viewpoint

arXiv.org Artificial Intelligence

The idea of Artificial Intelligence (AI) has a long history. It turned out, however, that reaching intelligence at human levels is more complicated than originally anticipated. Currently we are experiencing a renewed interest in AI, fueled by an enormous increase in computing power and an even larger increase in data, in combination with improved AI technologies like deep learning. Healthcare is considered the next domain to be revolutionized by Artificial Intelligence. While AI approaches are excellently suited to develop certain algorithms, for biomedical applications there are specific challenges. We propose recommendations to improve AI projects in the biomedical space and especially clinical healthcare.


Secure and Robust Machine Learning for Healthcare: A Survey

arXiv.org Machine Learning

Recent years have witnessed widespread adoption of machine learning (ML)/deep learning (DL) techniques due to their superior performance for a variety of healthcare applications ranging from the prediction of cardiac arrest from one-dimensional heart signals to computer-aided diagnosis (CADx) using multi-dimensional medical images. Notwithstanding the impressive performance of ML/DL, there are still lingering doubts regarding the robustness of ML/DL in healthcare settings (which is traditionally considered quite challenging due to the myriad security and privacy issues involved), especially in light of recent results that have shown that ML/DL are vulnerable to adversarial attacks. In this paper, we present an overview of various application areas in healthcare that leverage such techniques from security and privacy point of view and present associated challenges. In addition, we present potential methods to ensure secure and privacy-preserving ML for healthcare applications. Finally, we provide insight into the current research challenges and promising directions for future research.


Precision Medicine as an Accelerator for Next Generation Cognitive Supercomputing

arXiv.org Artificial Intelligence

In the past several years, we have taken advantage of a number of opportunities to advance the intersection of next generation high-performance computing AI and big data technologies through partnerships in precision medicine. Today we are in the throes of piecing together what is likely the most unique convergence of medical data and computer technologies. But more deeply, we observe that the traditional paradigm of computer simulation and prediction needs fundamental revision. This is the time for a number of reasons. We will review what the drivers are, why now, how this has been approached over the past several years, and where we are heading.