Collaborating Authors

Disentangled Generative Causal Representation Learning Artificial Intelligence

This paper proposes a Disentangled gEnerative cAusal Representation (DEAR) learning method. Unlike existing disentanglement methods that enforce independence of the latent variables, we consider the general case where the underlying factors of interests can be causally correlated. We show that previous methods with independent priors fail to disentangle causally correlated factors. Motivated by this finding, we propose a new disentangled learning method called DEAR that enables causal controllable generation and causal representation learning. The key ingredient of this new formulation is to use a structural causal model (SCM) as the prior for a bidirectional generative model. The prior is then trained jointly with a generator and an encoder using a suitable GAN loss. Theoretical justification on the proposed formulation is provided, which guarantees disentangled causal representation learning under appropriate conditions. We conduct extensive experiments on both synthesized and real datasets to demonstrate the effectiveness of DEAR in causal controllable generation, and the benefits of the learned representations for downstream tasks in terms of sample efficiency and distributional robustness.

SRGAN: Training Dataset Matters Artificial Intelligence

Generative Adversarial Networks (GANs) in supervised settings can generate photo-realistic corresponding output from low-definition input (SRGAN). Using the architecture presented in the SRGAN original paper [2], we explore how selecting a dataset affects the outcome by using three different datasets to see that SRGAN fundamentally learns objects, with their shape, color, and texture, and redraws them in the output rather than merely attempting to sharpen edges. This is further underscored with our demonstration that once the network learns the images of the dataset, it can generate a photo-like image with even a slight hint of what it might look like for the original from a very blurry edged sketch. Given a set of inference images, the network trained with the same dataset results in a better outcome over the one trained with arbitrary set of images, and we report its significance numerically with Frechet Inception Distance score [22].

Fairness GAN Machine Learning

In this paper, we introduce the Fairness GAN, an approach for generating a dataset that is plausibly similar to a given multimedia dataset, but is more fair with respect to protected attributes in allocative decision making. We propose a novel auxiliary classifier GAN that strives for demographic parity or equality of opportunity and show empirical results on several datasets, including the CelebFaces Attributes (CelebA) dataset, the Quick, Draw!\ dataset, and a dataset of soccer player images and the offenses they were called for. The proposed formulation is well-suited to absorbing unlabeled data; we leverage this to augment the soccer dataset with the much larger CelebA dataset. The methodology tends to improve demographic parity and equality of opportunity while generating plausible images.

Generating steganographic images via adversarial training

Neural Information Processing Systems

Adversarial training has proved to be competitive against supervised learning methods on computer vision tasks. However, studies have mainly been confined to generative tasks such as image synthesis. In this paper, we apply adversarial training techniques to the discriminative task of learning a steganographic algorithm. Steganography is a collection of techniques for concealing the existence of information by embedding it within a non-secret medium, such as cover texts or images. We show that adversarial training can produce robust steganographic techniques: our unsupervised training scheme produces a steganographic algorithm that competes with state-of-the-art steganographic techniques. We also show that supervised training of our adversarial model produces a robust steganalyzer, which performs the discriminative task of deciding if an image contains secret information. We define a game between three parties, Alice, Bob and Eve, in order to simultaneously train both a steganographic algorithm and a steganalyzer. Alice and Bob attempt to communicate a secret message contained within an image, while Eve eavesdrops on their conversation and attempts to determine if secret information is embedded within the image. We represent Alice, Bob and Eve by neural networks, and validate our scheme on two independent image datasets, showing our novel method of studying steganographic problems is surprisingly competitive against established steganographic techniques.

Detecting fake face images created by both humans and machines


Researchers at the State University of New York in Korea have recently explored new ways to detect both machine and human-created fake images of faces. In their paper, published in ACM Digital Library, the researchers used ensemble methods to detect images created by generative adversarial networks (GANs) and employed pre-processing techniques to improve the detection of images created by humans using Photoshop. Over the past few years, significant advancements in image processing and machine learning have enabled the generation of fake, yet highly realistic, images. However, these images could also be used to create fake identities, make fake news more convincing, bypass image detection algorithms, or fool image recognition tools. "Fake face images have been a topic of research for quite some time now, but studies have mainly focused on photos made by humans, using Photoshop tools," Shahroz Tariq, one of the researchers who carried out the study told Tech Xplore.