Betancourt, Brenda, Zanella, Giacomo, Miller, Jeffrey W., Wallach, Hanna, Zaidi, Abbas, Steorts, Rebecca C.

Most generative models for clustering implicitly assume that the number of data points in each cluster grows linearly with the total number of data points. Finite mixture models, Dirichlet process mixture models, and Pitman-Yor process mixture models make this assumption, as do all other infinitely exchangeable clustering models. However, for some applications, this assumption is inappropriate. For example, when performing entity resolution, the size of each cluster should be unrelated to the size of the data set, and each cluster should contain a negligible fraction of the total number of data points. These applications require models that yield clusters whose sizes grow sublinearly with the size of the data set. We address this requirement by defining the microclustering property and introducing a new class of models that can exhibit this property. We compare models within this class to two commonly used clustering models using four entity-resolution data sets.

van der Hoeven, Dirk, van Erven, Tim, Kotłowski, Wojciech

A standard introduction to online learning might place Online Gradient Descent at its center and then proceed to develop generalizations and extensions like Online Mirror Descent and second-order methods. Here we explore the alternative approach of putting exponential weights (EW) first. We show that many standard methods and their regret bounds then follow as a special case by plugging in suitable surrogate losses and playing the EW posterior mean. For instance, we easily recover Online Gradient Descent by using EW with a Gaussian prior on linearized losses, and, more generally, all instances of Online Mirror Descent based on regular Bregman divergences also correspond to EW with a prior that depends on the mirror map. Furthermore, appropriate quadratic surrogate losses naturally give rise to Online Gradient Descent for strongly convex losses and to Online Newton Step. We further interpret several recent adaptive methods (iProd, Squint, and a variation of Coin Betting for experts) as a series of closely related reductions to exp-concave surrogate losses that are then handled by Exponential Weights. Finally, a benefit of our EW interpretation is that it opens up the possibility of sampling from the EW posterior distribution instead of playing the mean. As already observed by Bubeck and Eldan, this recovers the best-known rate in Online Bandit Linear Optimization.

Zanella, Giacomo, Betancourt, Brenda, Wallach, Hanna, Miller, Jeffrey, Zaidi, Abbas, Steorts, Rebecca C.

Most generative models for clustering implicitly assume that the number of data points in each cluster grows linearly with the total number of data points. Finite mixture models, Dirichlet process mixture models, and Pitman--Yor process mixture models make this assumption, as do all other infinitely exchangeable clustering models. However, for some applications, this assumption is inappropriate. For example, when performing entity resolution, the size of each cluster should be unrelated to the size of the data set, and each cluster should contain a negligible fraction of the total number of data points. These applications require models that yield clusters whose sizes grow sublinearly with the size of the data set. We address this requirement by defining the microclustering property and introducing a new class of models that can exhibit this property. We compare models within this class to two commonly used clustering models using four entity-resolution data sets.

In part, the critics of AI are driven by the knowledge that'white collar jobs' are the ones that are now under threat. Business leaders are frequently confronted by notions of job-killing automation and headlines on the variation of the theme that "Robots Will Steal Our Jobs." Elon Musk, CEO of Tesla, Silicon Valley figurehead, and champion of technology-driven innovation even goes a step further by suggesting AI is a fundamental threat to human civilisation. The robot on the assembly line is now a familiar image. AI in middle management is new.

Herbrich, Ralf, Graepel, Thore

We present a bound on the generalisation error of linear classifiers in terms of a refined margin quantity on the training set. The result is obtained in a PAC-Bayesian framework and is based on geometrical arguments in the space of linear classifiers. The new bound constitutes an exponential improvement of the so far tightest margin bound by Shawe-Taylor et al. [8] and scales logarithmically in the inverse margin. Even in the case of less training examples than input dimensions sufficiently large margins lead to nontrivial bound values and - for maximum margins - to a vanishing complexity term.Furthermore, the classical margin is too coarse a measure for the essential quantity that controls the generalisation error: the volume ratio between the whole hypothesis space and the subset of consistent hypotheses. The practical relevance of the result lies in the fact that the well-known support vector machine is optimal w.r.t. the new bound only if the feature vectors are all of the same length. As a consequence we recommend to use SVMs on normalised feature vectors only - a recommendation that is well supported by our numerical experiments on two benchmark data sets. 1 Introduction Linear classifiers are exceedingly popular in the machine learning community due to their straightforward applicability and high flexibility which has recently been boosted by the so-called kernel methods [13]. A natural and popular framework for the theoretical analysis of classifiers is the PAC (probably approximately correct) framework[11] which is closely related to Vapnik's work on the generalisation error [12]. For binary classifiers it turned out that the growth function is an appropriate measureof "complexity" and can tightly be upper bounded by the VC (Vapnik-Chervonenkis) dimension [14].