Introduction to TensorFlow Lite TensorFlow

#artificialintelligence

TensorFlow Lite is TensorFlow's lightweight solution for mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size. TensorFlow Lite also supports hardware acceleration with the Android Neural Networks API. TensorFlow Lite uses many techniques for achieving low latency such as optimizing the kernels for mobile apps, pre-fused activations, and quantized kernels that allow smaller and faster (fixed-point math) models. Most of our TensorFlow Lite documentation is on Github for the time being.


Google Announces Tensorflow Lite: A Neural Network Library for Mobile Phones

#artificialintelligence

Dave Burke, VP of engineering at Google, announced a new version of Tensorflow optimised for mobile phones. This new library, called Tensorflow Lite, would enable developers to run their artificial intelligence applications in real time on the phones of users. According to Burke, the library is designed to be fast and small while still enabling state-of-the-art techniques. It will be released later this year as part of the open source Tensorflow project. At the moment, most artificial intelligence processing happens on servers of software as a service providers.


Deep Learning: TensorFlow Programming via XML and PMML

@machinelearnbot

This article demonstrates separation of the Neural Network problem specification and its solution code. In this approach, problem dataset and its Neural network are specified in a PMML like XML file. Then it is used to populate the TensorFlow graph, which, in turn run to get the results. Iris dataset is used as a data source in this approach. With suitable enhancements, other data sources, even different Neural Network types and other libraries can also be incorporated in it.


tensorflow/tensorflow

#artificialintelligence

TensorFlow is an open source software library for numerical computation using data flow graphs. The graph nodes represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) that flow between them. This flexible architecture enables you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device without rewriting code. TensorFlow also includes TensorBoard, a data visualization toolkit. TensorFlow was originally developed by researchers and engineers working on the Google Brain team within Google's Machine Intelligence Research organization for the purposes of conducting machine learning and deep neural networks research.


TensorFlow tutorial: Get started with TensorFlow machine learning

@machinelearnbot

Machine learning couldn't be hotter, with several heavy hitters offering platforms aimed at seasoned data scientists and newcomers interested in working with neural networks. Among the more popular options is TensorFlow, a machine learning library that Google open-sourced in November 2015. I discussed how the library has become more mature, implemented more algorithms and deployment options, and become easier to program over the preceding year. The best deep learning library had become even better. In this article, I'll give you a very quick gloss on machine learning, introduce you to the basics of TensorFlow, walk you through a few TensorFlow models in the area of image classification, and show you the new high-level APIs.