Designing Quality into Expert Systems: A Case Study in Automated Insurance Underwriting

AAAI Conferences

It can be difficult to design and develop artificial intelligence systems to meet specific quality standards. Often, AI systems are designed to be "as good as possible" rather than meeting particular targets. Using the Design for Six Sigma quality methodology, an automated insurance underwriting expert system was designed, developed, and fielded. Using this methodology resulted in meeting the high quality expectations required for deployment.


Synechron launches AI data science accelerators for FS firms

#artificialintelligence

These four new solution accelerators help financial services and insurance firms solve complex business challenges by discovering meaningful relationships between events that impact one another (correlation) and cause a future event to happen (causation). Following the success of Synechron's AI Automation Program – Neo, Synechron's AI Data Science experts have developed a powerful set of accelerators that allow financial firms to address business challenges related to investment research generation, predicting the next best action to take with a wealth management client, high-priority customer complaints, and better predicting credit risk related to mortgage lending. The Accelerators combine Natural Language Processing (NLP), Deep Learning algorithms and Data Science to solve the complex business challenges and rely on a powerful Spark and Hadoop platform to ingest and run correlations across massive amounts of data to test hypotheses and predict future outcomes. The Data Science Accelerators are the fifth Accelerator program Synechron has launched in the last two years through its Financial Innovation Labs (FinLabs), which are operating in 11 key global financial markets across North America, Europe, Middle East and APAC; including: New York, Charlotte, Fort Lauderdale, London, Paris, Amsterdam, Serbia, Dubai, Pune, Bangalore and Hyderabad. With this, Synechron's Global Accelerator programs now includes over 50 Accelerators for: Blockchain, AI Automation, InsurTech, RegTech, and AI Data Science and a dedicated team of over 300 employees globally.


Sparsity-Promoting Bayesian Dynamic Linear Models

arXiv.org Machine Learning

Sparsity-promoting priors have become increasingly popular over recent years due to an increased number of regression and classification applications involving a large number of predictors. In time series applications where observations are collected over time, it is often unrealistic to assume that the underlying sparsity pattern is fixed. We propose here an original class of flexible Bayesian linear models for dynamic sparsity modelling. The proposed class of models expands upon the existing Bayesian literature on sparse regression using generalized multivariate hyperbolic distributions. The properties of the models are explored through both analytic results and simulation studies. We demonstrate the model on a financial application where it is shown that it accurately represents the patterns seen in the analysis of stock and derivative data, and is able to detect major events by filtering an artificial portfolio of assets.


Finance experts note importance of workforce diversity, global collaboration

The Japan Times

Against a backdrop of startling international developments, such as Brexit and the Hong Kong protests, Japan's financial sector is uniquely positioned to step out of the shadows of its competitors in Singapore and Hong Kong. This is the assessment of The Organization of Global Financial City Tokyo -- also known as FinCity.Tokyo -- which, on March 19, held its FinCity Global Forum at the Grand Hyatt Tokyo in Roppongi to explore the opportunities and challenges that await Japan in its pursuit to become a top global financial hub. Established in April 2019, FinCity.Tokyo is an organization that promotes Tokyo as a global financial hub and supports foreign financial services firms set up in Tokyo. In addition to the keynote and other speeches, the forum consisted of a series of panel discussions that invited industry veterans to discuss a wide array of topics, ranging from regional revitalization and socially oriented asset management to competition and collaboration among international financial cities. The first panel, centered on the theme of "Advancement of the Asset Management Industry and Global Financial City Initiative," invited panelists Yasumasa Tahara, director of the strategy development division at the Financial Services Agency; Kazuhide Toda, managing executive officer and chief investment officer at Nippon Life Insurance Company; and Oki Matsumoto, chairman and CEO at Monex Group Inc., to share their thoughts on how the industry can improve its asset management environment.


Causal Data Science for Financial Stress Testing

arXiv.org Artificial Intelligence

The most recent financial upheavals have cast doubt on the adequacy of some of the conventional quantitative risk management strategies, such as VaR (Value at Risk), in many common situations. Consequently, there has been an increasing need for verisimilar financial stress testings, namely simulating and analyzing financial portfolios in extreme, albeit rare scenarios. Unlike conventional risk management which exploits statistical correlations among financial instruments, here we focus our analysis on the notion of probabilistic causation, which is embodied by Suppes-Bayes Causal Networks (SBCNs); SBCNs are probabilistic graphical models that have many attractive features in terms of more accurate causal analysis for generating financial stress scenarios. In this paper, we present a novel approach for conducting stress testing of financial portfolios based on SBCNs in combination with classical machine learning classification tools. The resulting method is shown to be capable of correctly discovering the causal relationships among financial factors that affect the portfolios and thus, simulating stress testing scenarios with a higher accuracy and lower computational complexity than conventional Monte Carlo Simulations.