Goto

Collaborating Authors

Doubly Convolutional Neural Networks

Neural Information Processing Systems

In this paper, we propose doubly convolutional neural networks (DCNNs), which significantly improve the performance of CNNs by further exploring this idea. In stead of allocating a set of convolutional filters that are independently learned, a DCNN maintains groups of filters where filters within each group are translated versions of each other. Practically, a DCNN can be easily implemented by a two-step convolution procedure, which is supported by most modern deep learning libraries. We perform extensive experiments on three image classification benchmarks: CIFAR-10, CIFAR-100 and ImageNet, and show that DCNNs consistently outperform other competing architectures. We have also verified that replacing a convolutional layer with a doubly convolutional layer at any depth of a CNN can improve its performance.



Powerset Convolutional Neural Networks

Neural Information Processing Systems

We present a novel class of convolutional neural networks (CNNs) for set functions, i.e., data indexed with the powerset of a finite set. The convolutions are derived as linear, shift-equivariant functions for various notions of shifts on set functions. The framework is fundamentally different from graph convolutions based on the Laplacian, as it provides not one but several basic shifts, one for each element in the ground set. Prototypical experiments with several set function classification tasks on synthetic datasets and on datasets derived from real-world hypergraphs demonstrate the potential of our new powerset CNNs. Papers published at the Neural Information Processing Systems Conference.


Bayesian Graph Convolutional Neural Networks using Node Copying

arXiv.org Machine Learning

Graph convolutional neural networks (GCNN) have numerous applications in different graph based learning tasks. Although the techniques obtain impressive results, they often fall short in accounting for the uncertainty associated with the underlying graph structure. In the recently proposed Bayesian GCNN (BGCN) framework, this issue is tackled by viewing the observed graph as a sample from a parametric random graph model and targeting joint inference of the graph and the GCNN weights. In this paper, we introduce an alternative generative model for graphs based on copying nodes and incorporate it within the BGCN framework. Our approach has the benefit that it uses information provided by the node features and training labels in the graph topology inference. Experiments show that the proposed algorithm compares favorably to the state-of-the-art in benchmark node classification tasks.


Convolutional Neural Networks Coursera

@machinelearnbot

About this course: This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applications ranging from safe autonomous driving, to accurate face recognition, to automatic reading of radiology images. You will: - Understand how to build a convolutional neural network, including recent variations such as residual networks. This is the fourth course of the Deep Learning Specialization.