Goto

Collaborating Authors


Health State Estimation

arXiv.org Artificial Intelligence

Life's most valuable asset is health. Continuously understanding the state of our health and modeling how it evolves is essential if we wish to improve it. Given the opportunity that people live with more data about their life today than any other time in history, the challenge rests in interweaving this data with the growing body of knowledge to compute and model the health state of an individual continually. This dissertation presents an approach to build a personal model and dynamically estimate the health state of an individual by fusing multi-modal data and domain knowledge. The system is stitched together from four essential abstraction elements: 1. the events in our life, 2. the layers of our biological systems (from molecular to an organism), 3. the functional utilities that arise from biological underpinnings, and 4. how we interact with these utilities in the reality of daily life. Connecting these four elements via graph network blocks forms the backbone by which we instantiate a digital twin of an individual. Edges and nodes in this graph structure are then regularly updated with learning techniques as data is continuously digested. Experiments demonstrate the use of dense and heterogeneous real-world data from a variety of personal and environmental sensors to monitor individual cardiovascular health state. State estimation and individual modeling is the fundamental basis to depart from disease-oriented approaches to a total health continuum paradigm. Precision in predicting health requires understanding state trajectory. By encasing this estimation within a navigational approach, a systematic guidance framework can plan actions to transition a current state towards a desired one. This work concludes by presenting this framework of combining the health state and personal graph model to perpetually plan and assist us in living life towards our goals.


Large expert-curated database for benchmarking document similarity detection in biomedical literature search

#artificialintelligence

Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations.


Top Data Sources for Journalists in 2018 (350 Sources)

@machinelearnbot

There are many different types of sites that provide a wealth of free, freemium and paid data that can help audience developers and journalists with their reporting and storytelling efforts, The team at State of Digital Publishing would like to acknowledge these, as derived from manual searches and recognition from our existing audience. Kaggle's a site that allows users to discover machine learning while writing and sharing cloud-based code. Relying primarily on the enthusiasm of its sizable community, the site hosts dataset competitions for cash prizes and as a result it has massive amounts of data compiled into it. Whether you're looking for historical data from the New York Stock Exchange, an overview of candy production trends in the US, or cutting edge code, this site is chockful of information. It's impossible to be on the Internet for long without running into a Wikipedia article.


Fake News: A Survey of Research, Detection Methods, and Opportunities

arXiv.org Artificial Intelligence

The explosive growth in fake news and its erosion to democracy, justice, and public trust has increased the demand for fake news analysis, detection and intervention. This survey comprehensively and systematically reviews fake news research. The survey identifies and specifies fundamental theories across various disciplines, e.g., psychology and social science, to facilitate and enhance the interdisciplinary research of fake news. Current fake news research is reviewed, summarized and evaluated. These studies focus on fake news from four perspective: (1) the false knowledge it carries, (2) its writing style, (3) its propagation patterns, and (4) the credibility of its creators and spreaders. We characterize each perspective with various analyzable and utilizable information provided by news and its spreaders, various strategies and frameworks that are adaptable, and techniques that are applicable. By reviewing the characteristics of fake news and open issues in fake news studies, we highlight some potential research tasks at the end of this survey.