Lindgren, Erik, Kocaoglu, Murat, Dimakis, Alexandros G., Vishwanath, Sriram

We consider the minimum cost intervention design problem: Given the essential graph of a causal graph and a cost to intervene on a variable, identify the set of interventions with minimum total cost that can learn any causal graph with the given essential graph. We first show that this problem is NP-hard. We then prove that we can achieve a constant factor approximation to this problem with a greedy algorithm. We then constrain the sparsity of each intervention. We develop an algorithm that returns an intervention design that is nearly optimal in terms of size for sparse graphs with sparse interventions and we discuss how to use it when there are costs on the vertices.

Guo, Xiaojie, Wu, Lingfei, Zhao, Liang

Inspired by the tremendous success of deep generative models on generating continuous data like image and audio, in the most recent year, few deep graph generative models have been proposed to generate discrete data such as graphs. They are typically unconditioned generative models which has no control on modes of the graphs being generated. Differently, in this paper, we are interested in a new problem named \emph{Deep Graph Translation}: given an input graph, we want to infer a target graph based on their underlying (both global and local) translation mapping. Graph translation could be highly desirable in many applications such as disaster management and rare event forecasting, where the rare and abnormal graph patterns (e.g., traffic congestions and terrorism events) will be inferred prior to their occurrence even without historical data on the abnormal patterns for this graph (e.g., a road network or human contact network). To achieve this, we propose a novel Graph-Translation-Generative Adversarial Networks (GT-GAN) which will generate a graph translator from input to target graphs. GT-GAN consists of a graph translator where we propose new graph convolution and deconvolution layers to learn the global and local translation mapping. A new conditional graph discriminator has also been proposed to classify target graphs by conditioning on input graphs. Extensive experiments on multiple synthetic and real-world datasets demonstrate the effectiveness and scalability of the proposed GT-GAN.

Van Tran, Dinh, Navarin, Nicolò, Sperduti, Alessandro

Recently, many researchers have been focusing on the definition of neural networks for graphs. The basic component for many of these approaches remains the graph convolution idea proposed almost a decade ago. In this paper, we extend this basic component, following an intuition derived from the well-known convolutional filters over multi-dimensional tensors. In particular, we derive a simple, efficient and effective way to introduce a hyper-parameter on graph convolutions that influences the filter size, i.e. its receptive field over the considered graph. We show with experimental results on real-world graph datasets that the proposed graph convolutional filter improves the predictive performance of Deep Graph Convolutional Networks.

Pan, Shirui, Hu, Ruiqi, Long, Guodong, Jiang, Jing, Yao, Lina, Zhang, Chengqi

Graph embedding is an effective method to represent graph data in a low dimensional space for graph analytics. Most existing embedding algorithms typically focus on preserving the topological structure or minimizing the reconstruction errors of graph data, but they have mostly ignored the data distribution of the latent codes from the graphs, which often results in inferior embedding in real-world graph data. In this paper, we propose a novel adversarial graph embedding framework for graph data. The framework encodes the topological structure and node content in a graph to a compact representation, on which a decoder is trained to reconstruct the graph structure. Furthermore, the latent representation is enforced to match a prior distribution via an adversarial training scheme. To learn a robust embedding, two variants of adversarial approaches, adversarially regularized graph autoencoder (ARGA) and adversarially regularized variational graph autoencoder (ARVGA), are developed. Experimental studies on real-world graphs validate our design and demonstrate that our algorithms outperform baselines by a wide margin in link prediction, graph clustering, and graph visualization tasks.

Schaarschmidt, Michael, Mika, Sven, Fricke, Kai, Yoneki, Eiko

Reinforcement learning (RL) tasks are challenging to implement, execute and test due to algorithmic instability, hyper-parameter sensitivity, and heterogeneous distributed communication patterns. We argue for the separation of logical component composition, backend graph definition, and distributed execution. To this end, we introduce RLgraph, a library for designing and executing high performance RL computation graphs in both static graph and define-by-run paradigms. The resulting implementations yield high performance across different deep learning frameworks and distributed backends.