Goto

Collaborating Authors

Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet?

arXiv.org Machine Learning

Despite recent progress made by self-supervised methods in representation learning with residual networks, they still underperform supervised learning on the ImageNet classification benchmark, limiting their applicability in performance-critical settings. Building on prior theoretical insights from Mitrovic et al., 2021, we propose ReLICv2 which combines an explicit invariance loss with a contrastive objective over a varied set of appropriately constructed data views. ReLICv2 achieves 77.1% top-1 classification accuracy on ImageNet using linear evaluation with a ResNet50 architecture and 80.6% with larger ResNet models, outperforming previous state-of-the-art self-supervised approaches by a wide margin. Most notably, ReLICv2 is the first representation learning method to consistently outperform the supervised baseline in a like-for-like comparison using a range of standard ResNet architectures. Finally we show that despite using ResNet encoders, ReLICv2 is comparable to state-of-the-art self-supervised vision transformers.


SSAST: Self-Supervised Audio Spectrogram Transformer

arXiv.org Artificial Intelligence

Recently, neural networks based purely on self-attention, such as the Vision Transformer (ViT), have been shown to outperform deep learning models constructed with convolutional neural networks (CNNs) on various vision tasks, thus extending the success of Transformers, which were originally developed for language processing, to the vision domain. A recent study showed that a similar methodology can also be applied to the audio domain. Specifically, the Audio Spectrogram Transformer (AST) achieves state-of-the-art results on various audio classification benchmarks. However, pure Transformer models tend to require more training data compared to CNNs, and the success of the AST relies on supervised pretraining that requires a large amount of labeled data and a complex training pipeline, thus limiting the practical usage of AST. This paper focuses on audio and speech classification, and aims to alleviate the data requirement issues with the AST by leveraging self-supervised learning using unlabeled data. Specifically, we propose to pretrain the AST model with joint discriminative and generative masked spectrogram patch modeling (MSPM) using unlabeled audio from AudioSet and Librispeech. We evaluate our pretrained models on both audio and speech classification tasks including audio event classification, keyword spotting, emotion recognition, and speaker identification. The proposed self-supervised framework significantly boosts AST performance on all tasks, with an average improvement of 60.9%, leading to similar or even better results than a supervised pretrained AST. To the best of our knowledge, it is the first patch-based self-supervised learning framework in the audio and speech domain, and also the first self-supervised learning framework for AST.


Simultaneous clustering and representation learning

AIHub

The success of deep learning over the last decade, particularly in computer vision, has depended greatly on large training data sets. Even though progress in this area boosted the performance of many tasks such as object detection, recognition, and segmentation, the main bottleneck for future improvement is more labeled data. Self-supervised learning is among the best alternatives for learning useful representations from the data. In this article, we will briefly review the self-supervised learning methods in the literature and discuss the findings of a recent self-supervised learning paper from ICLR 2020 [14]. We may assume that most learning problems can be tackled by having clean labeling and more data obtained in an unsupervised way.


SimCLR -- An answer to unlabelled data

#artificialintelligence

It is a method of machine learning where the model learns from the supervisory signal of the data unlike supervised learning where separate labels are specified for each observation. It is also known as Representation Learning. Note, the model's learned representation is used for downstream tasks like BERT, where language models are used for text classification tasks. Here, we can use Linear classifiers along with a learned self-supervised model for prediction. Supervised learning requires a large amount of labelled dataset to train a model.


Facebook & Inria Propose High-Performance Self-Supervised Technique for CV Tasks

#artificialintelligence

Researchers from Facebook and the French National Institute for Research in Digital Science and Technology (Inria) have developed a new technique for self-supervised training of convolutional networks used for image classification and other computer vision tasks. The proposed method surpasses supervised techniques on most transfer tasks and outperforms previous self-supervised approaches. "Our approach allows researchers to train efficient, high-performance image classification models with no annotations or metadata," the researchers write in a Facebook blog post. "More broadly, we believe that self-supervised learning is key to building more flexible and useful AI." Recent improvements in self-supervised training methods have established them as a serious alternative to traditional supervised training. Self-supervised approaches however are significantly slower to train compared to their supervised counterparts.