Goto

Collaborating Authors

Revisiting the Importance of Individual Units in CNNs via Ablation

arXiv.org Artificial Intelligence

We revisit the importance of the individual units in Convolutional Neural Networks (CNNs) for visual recognition. By conducting unit ablation experiments on CNNs trained on large scale image datasets, we demonstrate that, though ablating any individual unit does not hurt overall classification accuracy, it does lead to significant damage on the accuracy of specific classes. This result shows that an individual unit is specialized to encode information relevant to a subset of classes. We compute the correlation between the accuracy drop under unit ablation and various attributes of an individual unit such as class selectivity and weight L1 norm. We confirm that unit attributes such as class selectivity are a poor predictor for impact on overall accuracy as found previously in recent work \cite{morcos2018importance}. However, our results show that class selectivity along with other attributes are good predictors of the importance of one unit to individual classes. We evaluate the impact of random rotation, batch normalization, and dropout to the importance of units to specific classes. Our results show that units with high selectivity play an important role in network classification power at the individual class level. Understanding and interpreting the behavior of these units is necessary and meaningful.


The Future of Transportation

#artificialintelligence

Sengupta: Thank you so much for having me today. I'm really excited to be in San Francisco. I don't get to come here that often, which is strange because I live in Los Angeles, but I do like to come whenever I can. For my talk today, I'm going to talk about the future of transportation, specifically on the things that I worked on that I think are kind of the up and coming thing, the thing that I'm working on now and what's going to happen in the future. I think part of my career has always been about just doing fun and exciting new things and all my degrees are in aerospace engineering, ever since I was a little kid, I loved science fiction. I actually am a Star Trek person versus a Star Wars person, but I knew since I was a little kid that I wanted to be involved in the space program, so that's why I decided to go the aerospace engineering route and I wanted to build technology. I got my Ph.D. in plasma propulsion systems. Has anyone heard of the mission called Dawn that's out in the main asteroid belt? My Ph.D. research actually was developing the ion engine technology for that mission. It actually flew and got it to a pretty cool place out in the main asteroid belt looking at Vesta and Ceres. I did that for about five years and then I kind of felt like I had done everything I could possibly do on that front, from a research perspective. My management asked me if I wanted to work on the next mission to Mars. There's very few engineers in the space program who'd be like, "No, I'm just not interested in that." And they're like, "We want you to do the supersonic parachute for it."


Towards a Framework for Certification of Reliable Autonomous Systems

arXiv.org Artificial Intelligence

The capability and spread of such systems have reached the point where they are beginning to touch much of everyday life. However, regulators grapple with how to deal with autonomous systems, for example how could we certify an Unmanned Aerial System for autonomous use in civilian airspace? We here analyse what is needed in order to provide verified reliable behaviour of an autonomous system, analyse what can be done as the state-of-the-art in automated verification, and propose a roadmap towards developing regulatory guidelines, including articulating challenges to researchers, to engineers, and to regulators. Case studies in seven distinct domains illustrate the article. Keywords: autonomous systems; certification; verification; Artificial Intelligence 1 Introduction Since the dawn of human history, humans have designed, implemented and adopted tools to make it easier to perform tasks, often improving efficiency, safety, or security.


Within 10 Years, We'll Travel by Hyperloop, Rockets, and Avatars

#artificialintelligence

Try Hyperloop, rocket travel, and robotic avatars. Hyperloop is currently working towards 670 mph (1080 kph) passenger pods, capable of zipping us from Los Angeles to downtown Las Vegas in under 30 minutes. Rocket Travel (think SpaceX's Starship) promises to deliver you almost anywhere on the planet in under an hour. Think New York to Shanghai in 39 minutes. As 5G connectivity, hyper-realistic virtual reality, and next-gen robotics continue their exponential progress, the emergence of "robotic avatars" will all but nullify the concept of distance, replacing human travel with immediate remote telepresence.


Weakened Irma Leaves 3 Dead in Georgia, 1 in South Carolina

U.S. News

About 800 flights had been canceled at Hartsfield-Jackson Atlanta International Airport, which remained operational Monday, even as many planes turned corners of the tarmac into a parking lot. Metropolitan Atlanta Rapid Transit Authority suspended all bus and rail services Monday but said it would resume limited service Tuesday morning with plans to expand service as weather conditions improve. Downtown Atlanta's streets were eerily quiet, with restaurants, businesses and schools closed. Traffic flowed easily on the city's interstates, normally a sea of brake lights during rush hours.