The #IoT and #Analytics @ThingsExpo #BigData #BI #AI #MachineLearning

#artificialintelligence

The Internet of Things (IoT) promises to change everything by enabling "smart" environments (homes, cities, hospitals, schools, stores, etc.) and smart products (cars, trucks, airplanes, trains, wind turbines, lawnmowers, etc.). I recently wrote about the importance of moving beyond "connected" to "smart" in a blog titled "Internet of Things: Connected Does Not Equal Smart". The article discusses the importance of moving beyond just collecting the data, to transitioning to leveraging this new wealth of IoT data to improve the decisions that these smart environments and products need to make: to help these environments and products to self-monitor, self-diagnose and eventually, self-direct. But one of the key concepts in enabling this transition from connected to smart is the ability to perform "analytics at the edge." Shawn Rogers, Chief Research Officer at Dell Statistica, had the following quote in an article in Information Management titled "Will the Citizen Data Scientist Inherit the World?":


The #IoT and #Analytics @ThingsExpo #BigData #BI #AI #DX #MachineLearning

#artificialintelligence

Are we really "performing analytics" (collecting the data, storing the data, preparing the data, running analytic algorithms, validating the analytic goodness of fit and then acting on the results) at the edges, or are we just "executing the analytic models" at the edges? Okay, so we "execute" the pre-built modes at the edge, but we actually build (test, refine, test, refine) the analytic models by bringing the detailed sensor data back to a central data and analytics environment (a.k.a. Final point, even if you are doing all the sensor/IoT analysis at the edges, you are likely still going to want to bring the raw IoT data back into the data lake for more extensive analysis in order to house the detailed IoT history. And that's why you are going to want a data lake as the foundation of the transition from a "connected" IoT world to a "smart" IoT world.


The #IoT and #Analytics @ThingsExpo #BigData #BI #AI #DX #MachineLearning

@machinelearnbot

The Internet of Things (IoT) promises to change everything by enabling "smart" environments (homes, cities, hospitals, schools, stores, etc.) and smart products (cars, trucks, airplanes, trains, wind turbines, lawnmowers, etc.). I recently wrote about the importance of moving beyond "connected" to "smart" in a blog titled "Internet of Things: Connected Does Not Equal Smart". The article discusses the importance of moving beyond just collecting the data, to transitioning to leveraging this new wealth of IoT data to improve the decisions that these smart environments and products need to make: to help these environments and products to self-monitor, self-diagnose and eventually, self-direct. But one of the key concepts in enabling this transition from connected to smart is the ability to perform "analytics at the edge." Shawn Rogers, Chief Research Officer at Dell Statistica, had the following quote in an article in Information Management titled "Will the Citizen Data Scientist Inherit the World?": "Organizations are fast coming to the realization that IoT implementations are only going to become more vast and more pervasive, and that as that happens, the traditional analytic model of pulling all data in to a centralized source such as a data warehouse or analytic sandbox is going to make less and less sense.


The #IoT and #Analytics @ThingsExpo #BigData #BI #AI #DX #MachineLearning

#artificialintelligence

The Internet of Things (IoT) promises to change everything by enabling "smart" environments (homes, cities, hospitals, schools, stores, etc.) and smart products (cars, trucks, airplanes, trains, wind turbines, lawnmowers, etc.). I recently wrote about the importance of moving beyond "connected" to "smart" in a blog titled "Internet of Things: Connected Does Not Equal Smart". The article discusses the importance of moving beyond just collecting the data, to transitioning to leveraging this new wealth of IoT data to improve the decisions that these smart environments and products need to make: to help these environments and products to self-monitor, self-diagnose and eventually, self-direct. But one of the key concepts in enabling this transition from connected to smart is the ability to perform "analytics at the edge." Shawn Rogers, Chief Research Officer at Dell Statistica, had the following quote in an article in Information Management titled "Will the Citizen Data Scientist Inherit the World?": "Organizations are fast coming to the realization that IoT implementations are only going to become more vast and more pervasive, and that as that happens, the traditional analytic model of pulling all data in to a centralized source such as a data warehouse or analytic sandbox is going to make less and less sense.


The #IoT and #Analytics @ThingsExpo #BigData #BI #AI #MachineLearning

#artificialintelligence

The Internet of Things (IoT) promises to change everything by enabling "smart" environments (homes, cities, hospitals, schools, stores, etc.) and smart products (cars, trucks, airplanes, trains, wind turbines, lawnmowers, etc.). I recently wrote about the importance of moving beyond "connected" to "smart" in a blog titled "Internet of Things: Connected Does Not Equal Smart". The article discusses the importance of moving beyond just collecting the data, to transitioning to leveraging this new wealth of IoT data to improve the decisions that these smart environments and products need to make: to help these environments and products to self-monitor, self-diagnose and eventually, self-direct. But one of the key concepts in enabling this transition from connected to smart is the ability to perform "analytics at the edge." Shawn Rogers, Chief Research Officer at Dell Statistica, had the following quote in an article in Information Management titled "Will the Citizen Data Scientist Inherit the World?": "Organizations are fast coming to the realization that IoT implementations are only going to become more vast and more pervasive, and that as that happens, the traditional analytic model of pulling all data in to a centralized source such as a data warehouse or analytic sandbox is going to make less and less sense.