Goto

Collaborating Authors


Accused Russian hacker extradited to U.S. to face charges he attacked Dropbox, LinkedIn

USATODAY - Tech Top Stories

An Associated Press investigation finds that Russian cyber spies exploiting a national vulnerability in cybersecurity are trying to break into the emails of scores of people working on military drone technology. An accused Russian hacker blamed for attacking LinkedIn, Dropbox and Formspring is finally facing American prosecutors after a lengthy extradition fight in the Czech Republic. Yevgeniy Aleksandrovich Nikulin is due to appear in U.S. federal court in California on Thursday for a detention hearing. It's unclear whether Nikulin has any connection to the Russian troll farm the Internet Research Agency, which is widely blamed by American authorities for interfering in the 2016 presidential election. But only two days after Nikulin's arrest, American officials for the first time publicly warned that the Russian government was directing efforts to influence the election by hacking and releasing private information.


The 2018 Survey: AI and the Future of Humans

#artificialintelligence

"Please think forward to the year 2030. Analysts expect that people will become even more dependent on networked artificial intelligence (AI) in complex digital systems. Some say we will continue on the historic arc of augmenting our lives with mostly positive results as we widely implement these networked tools. Some say our increasing dependence on these AI and related systems is likely to lead to widespread difficulties. Our question: By 2030, do you think it is most likely that advancing AI and related technology systems will enhance human capacities and empower them? That is, most of the time, will most people be better off than they are today? Or is it most likely that advancing AI and related technology systems will lessen human autonomy and agency to such an extent that most people will not be better off than the way things are today? Please explain why you chose the answer you did and sketch out a vision of how the human-machine/AI collaboration will function in 2030.


Health State Estimation

arXiv.org Artificial Intelligence

Life's most valuable asset is health. Continuously understanding the state of our health and modeling how it evolves is essential if we wish to improve it. Given the opportunity that people live with more data about their life today than any other time in history, the challenge rests in interweaving this data with the growing body of knowledge to compute and model the health state of an individual continually. This dissertation presents an approach to build a personal model and dynamically estimate the health state of an individual by fusing multi-modal data and domain knowledge. The system is stitched together from four essential abstraction elements: 1. the events in our life, 2. the layers of our biological systems (from molecular to an organism), 3. the functional utilities that arise from biological underpinnings, and 4. how we interact with these utilities in the reality of daily life. Connecting these four elements via graph network blocks forms the backbone by which we instantiate a digital twin of an individual. Edges and nodes in this graph structure are then regularly updated with learning techniques as data is continuously digested. Experiments demonstrate the use of dense and heterogeneous real-world data from a variety of personal and environmental sensors to monitor individual cardiovascular health state. State estimation and individual modeling is the fundamental basis to depart from disease-oriented approaches to a total health continuum paradigm. Precision in predicting health requires understanding state trajectory. By encasing this estimation within a navigational approach, a systematic guidance framework can plan actions to transition a current state towards a desired one. This work concludes by presenting this framework of combining the health state and personal graph model to perpetually plan and assist us in living life towards our goals.


Cyber-All-Intel: An AI for Security related Threat Intelligence

arXiv.org Artificial Intelligence

Keeping up with threat intelligence is a must for a security analyst today. There is a volume of information present in `the wild' that affects an organization. We need to develop an artificial intelligence system that scours the intelligence sources, to keep the analyst updated about various threats that pose a risk to her organization. A security analyst who is better `tapped in' can be more effective. In this paper we present, Cyber-All-Intel an artificial intelligence system to aid a security analyst. It is a system for knowledge extraction, representation and analytics in an end-to-end pipeline grounded in the cybersecurity informatics domain. It uses multiple knowledge representations like, vector spaces and knowledge graphs in a 'VKG structure' to store incoming intelligence. The system also uses neural network models to pro-actively improve its knowledge. We have also created a query engine and an alert system that can be used by an analyst to find actionable cybersecurity insights.