Pattern Recognition Pattern Recognition Laboratory

AITopics Original Links

A typical human ability is the recognition of patterns in the world around us. It constitutes the basis of each natural science: the laws of physics, the description of species in biology, or the analysis of human behavior; they are all based on seeing patterns. Also in daily life pattern recognition plays an important role: reading texts, identifying people, retrieving objects, or finding the way in a city. Once patterns are established, learned from some examples or from a teacher, we are able to classify new objects or phenomena into a class of known patterns. The study of automatic pattern recognition has two sides, one purely fundamentally scientific and one applied.



Learning Language Using a Pattern Recognition Approach

AI Magazine

A pattern recognition algorithm is described that learns a transition net grammar from positive examples. Two sets of examples -- one in English and one in Chinese -- are presented. It is hoped that language learning will reduce the knowledge acquisition effort for expert systems and make the natural language interface to database systems more transportable. The algorithm presented makes a step in that direction by providing a robust parser and reducing special interaction for introduction of new words and terms.


Learning what matters - Sampling interesting patterns

arXiv.org Machine Learning

In the field of exploratory data mining, local structure in data can be described by patterns and discovered by mining algorithms. Although many solutions have been proposed to address the redundancy problems in pattern mining, most of them either provide succinct pattern sets or take the interests of the user into account-but not both. Consequently, the analyst has to invest substantial effort in identifying those patterns that are relevant to her specific interests and goals. To address this problem, we propose a novel approach that combines pattern sampling with interactive data mining. In particular, we introduce the LetSIP algorithm, which builds upon recent advances in 1) weighted sampling in SAT and 2) learning to rank in interactive pattern mining. Specifically, it exploits user feedback to directly learn the parameters of the sampling distribution that represents the user's interests. We compare the performance of the proposed algorithm to the state-of-the-art in interactive pattern mining by emulating the interests of a user. The resulting system allows efficient and interleaved learning and sampling, thus user-specific anytime data exploration. Finally, LetSIP demonstrates favourable trade-offs concerning both quality-diversity and exploitation-exploration when compared to existing methods.


DoSTra: Discovering Common Behaviors of Objects Using the Duration of Staying on Each Location of Trajectories

AAAI Conferences

Since semantic trajectories can discover more semantic meanings of a user’s interests without geographic restrictions, research on semantic trajectories has attracted a lot of attentions in recent years. Most existing work discover the similar behavior of moving objects through analysis of their semantic trajectory pattern, that is, sequences of locations. However, this kind of trajectories without considering the duration of staying on a location limits wild applications. For example, Tom and Anne have a common pattern of Home Restaurant Company Restaurant , but they are not similar, since Tom works at Restaurant , sends snack to someone at Company and return to Restaurant while Anne has breakfast at Restaurant , works at Company and has lunch at Restaurant . If we consider duration of staying on each location we can easily to differentiate their behaviors. In this paper, we propose a novel approach for discovering common behaviors by considering the duration of staying on each location of trajectories (DoSTra). Our approach can be used to detect the group that has similar lifestyle, habit or behavior patterns and predict the future locations of moving objects. We evaluate the experiment based on synthetic dataset, which demonstrates the high effectiveness and efficiency of the proposed method.