Goto

Collaborating Authors

Target-Dependent Twitter Sentiment Classification with Rich Automatic Features

AAAI Conferences

Target-dependent sentiment analysis on Twitter has attracted increasing research attention. Most previous work relies on syntax, such as automatic parse trees, which are subject to noise for informal text such as tweets. In this paper, we show that competitive results can be achieved without the use of syntax, by extracting a rich set of automatic features. In particular, we split a tweet into a left context and a right context according to a given target, using distributed word representations and neural pooling functions to extract features. Both sentiment-driven and standard embeddings are used, and a rich set of neural pooling functions are explored. Sentiment lexicons are used as an additional source of information for feature extraction. In standard evaluation, the conceptually simple method gives a 4.8% absolute improvement over the state-of-the-art on three-way targeted sentiment classification, achieving the best reported results for this task.


Domain-Specific Sentiment Classification for Games-Related Tweets

AAAI Conferences

Sentiment classification provides information about the author's feeling toward a topic through the use of expressive words. However, words indicative of a particular sentiment class can be domain-specific. We train a text classifier for Twitter data related to games using labels inferred from emoticons. Our classifier is able to differentiate between positive and negative sentiment tweets labeled by emoticons with 75.1% accuracy. Additionally, we test the classifier on human-labeled examples with the additional case of neutral or ambiguous sentiment. Finally, we have made the data available to the community for further use and analysis.


COVID-19 Public Sentiment Insights and Machine Learning for Tweets Classification

#artificialintelligence

Along with the Coronavirus pandemic, another crisis has manifested itself in the form of mass fear and panic phenomena, fueled by incomplete and often inaccurate information. There is therefore a tremendous need to address and better understand COVID-19’s informational crisis and gauge public sentiment, so that appropriate messaging and policy decisions can be implemented. In this research article, we identify public sentiment associated with the pandemic using Coronavirus specific Tweets and R statistical software, along with its sentiment analysis packages. We demonstrate insights into the progress of fear-sentiment over time as COVID-19 approached peak levels in the United States, using descriptive textual analytics supported by necessary textual data visualizations. Furthermore, we provide a methodological overview of two essential machine learning (ML) classification methods, in the context of textual analytics, and compare their effectiveness in classifying Coronavirus Tweets of varying lengths. We observe a strong classification accuracy of 91% for short Tweets, with the Naïve Bayes method. We also observe that the logistic regression classification method provides a reasonable accuracy of 74% with shorter Tweets, and both methods showed relatively weaker performance for longer Tweets. This research provides insights into Coronavirus fear sentiment progression, and outlines associated methods, implications, limitations and opportunities.


NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis

arXiv.org Artificial Intelligence

Sentiment analysis is one of the most widely studied applications in NLP, but most work focuses on languages with large amounts of data. We introduce the first large-scale human-annotated Twitter sentiment dataset for the four most widely spoken languages in Nigeria (Hausa, Igbo, Nigerian-Pidgin, and Yor\`ub\'a ) consisting of around 30,000 annotated tweets per language (and 14,000 for Nigerian-Pidgin), including a significant fraction of code-mixed tweets. We propose text collection, filtering, processing and labeling methods that enable us to create datasets for these low-resource languages. We evaluate a rangeof pre-trained models and transfer strategies on the dataset. We find that language-specific models and language-adaptivefine-tuning generally perform best. We release the datasets, trained models, sentiment lexicons, and code to incentivizeresearch on sentiment analysis in under-represented languages.


Exploring Feature Definition and Selection for Sentiment Classifiers

AAAI Conferences

In this paper, we systematically explore feature definition and selection strategies for sentiment polarity classification. We begin by exploring basic questions, such as whether to use stemming, term frequency versus binary weighting, negation-enriched features, n-grams or phrases. We then move onto more complex aspects including feature selection using frequency-based vocabulary trimming, part-of-speech and lexicon selection (three types of lexicons), as well as using expected Mutual Information (MI). Using three product and movie review datasets of various sizes, we show, for example, that some techniques are more beneficial for larger datasets than the smaller. A classifier trained on only few features ranked high by MI outperformed one trained on all features in large datasets, yet in small dataset this did not prove to be true. Finally, we perform a space and computation cost analysis to further understand the merits of various feature types.