Collaborating Authors

Abolish the #TechToPrisonPipeline


The authors of the Harrisburg University study make explicit their desire to provide "a significant advantage for law enforcement agencies and other intelligence agencies to prevent crime" as a co-author and former NYPD police officer outlined in the original press release.[38] At a time when the legitimacy of the carceral state, and policing in particular, is being challenged on fundamental grounds in the United States, there is high demand in law enforcement for research of this nature, research which erases historical violence and manufactures fear through the so-called prediction of criminality. Publishers and funding agencies serve a crucial role in feeding this ravenous maw by providing platforms and incentives for such research. The circulation of this work by a major publisher like Springer would represent a significant step towards the legitimation and application of repeatedly debunked, socially harmful research in the real world. To reiterate our demands, the review committee must publicly rescind the offer for publication of this specific study, along with an explanation of the criteria used to evaluate it. Springer must issue a statement condemning the use of criminal justice statistics to predict criminality and acknowledging their role in incentivizing such harmful scholarship in the past. Finally, all publishers must refrain from publishing similar studies in the future.

GPT-3 Creative Fiction


What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.

US appeals court says Tinder Plus pricing is discriminatory


They say all's fair in love and war, but those that have used Tinder will probably disagree. And that includes Allan Candelore, a man suing the dating app over the pricing of its premium service, Tinder Plus. Candelore and his lawyers argue that charging $9.99 a month to users under 30, and $19.99 a month to those over 30, is age discrimination, and violates two California laws: the Unruh Civil Rights Act and the Unfair Competition Law.

Unwanted Advances in Higher Education: Uncovering Sexual Harassment Experiences in Academia with Text Mining Machine Learning

Sexual harassment in academia is often a hidden problem because victims are usually reluctant to report their experiences. Recently, a web survey was developed to provide an opportunity to share thousands of sexual harassment experiences in academia. Using an efficient approach, this study collected and investigated more than 2,000 sexual harassment experiences to better understand these unwanted advances in higher education. This paper utilized text mining to disclose hidden topics and explore their weight across three variables: harasser gender, institution type, and victim's field of study. We mapped the topics on five themes drawn from the sexual harassment literature and found that more than 50% of the topics were assigned to the unwanted sexual attention theme. Fourteen percent of the topics were in the gender harassment theme, in which insulting, sexist, or degrading comments or behavior was directed towards women. Five percent of the topics involved sexual coercion (a benefit is offered in exchange for sexual favors), 5% involved sex discrimination, and 7% of the topics discussed retaliation against the victim for reporting the harassment, or for simply not complying with the harasser. Findings highlight the power differential between faculty and students, and the toll on students when professors abuse their power. While some topics did differ based on type of institution, there were no differences between the topics based on gender of harasser or field of study. This research can be beneficial to researchers in further investigation of this paper's dataset, and to policymakers in improving existing policies to create a safe and supportive environment in academia.

Practical Approach to Knowledge-based Question Answering with Natural Language Understanding and Advanced Reasoning Artificial Intelligence

This research hypothesized that a practical approach in the form of a solution framework known as Natural Language Understanding and Reasoning for Intelligence (NaLURI), which combines full-discourse natural language understanding, powerful representation formalism capable of exploiting ontological information and reasoning approach with advanced features, will solve the following problems without compromising practicality factors: 1) restriction on the nature of question and response, and 2) limitation to scale across domains and to real-life natural language text.