Collaborating Authors

CloudLSTM: A Recurrent Neural Model for Spatiotemporal Point-cloud Stream Forecasting Machine Learning

This paper introduces CloudLSTM, a new branch of recurrent neural network models tailored to forecasting over data streams generated by geospatial point-cloud sources. We design a Dynamic Convolution (D-Conv) operator as the core component of CloudLSTMs, which allows performing convolution operations directly over point-clouds and extracts local spatial features from sets of neighboring points that surround different elements of the input. This maintains the permutation invariance of sequence-to-sequence learning frameworks, while enabling learnable neighboring correlations at each time step -- an important aspect in spatiotemporal predictive learning. The D-Conv operator resolves the grid-structural data requirements of existing spatiotemporal forecasting models (e.g. ConvLSTM) and can be easily plugged into traditional LSTM architectures with sequence-to-sequence learning and attention mechanisms. As a case study, we perform antenna-level forecasting of the data traffic generated by mobile services, demonstrating that the proposed CloudLSTM achieves state-of-the-art performance with measurement datasets collected in operational metropolitan-scale mobile network deployments.

Classification of Mobile Services and Apps through Physical Channel Fingerprinting: a Deep Learning Approach Machine Learning

The automatic classification of applications and services is an invaluable feature for new generation mobile networks. Here, we propose and validate algorithms to perform this task, at runtime, from the raw physical channel of an operative mobile network, without having to decode and/or decrypt the transmitted flows. Towards this, we decode Downlink Control Information (DCI) messages carried within the LTE Physical Downlink Control CHannel (PDCCH). DCI messages are sent by the radio cell in clear text and, in this paper, are utilized to classify the applications and services executed at the connected mobile terminals. Two datasets are collected through a large measurement campaign: one labeled, used to train the classification algorithms, and one unlabeled, collected from four radio cells in the metropolitan area of Barcelona, in Spain. Among other approaches, our Convolutional Neural Network (CNN) classifier provides the highest classification accuracy of 99%. The CNN classifier is then augmented with the capability of rejecting sessions whose patterns do not conform to those learned during the training phase, and is subsequently utilized to attain a fine grained decomposition of the traffic for the four monitored radio cells, in an online and unsupervised fashion.

Road Network Guided Fine-Grained Urban Traffic Flow Inference Artificial Intelligence

Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem, which can help greatly reduce the number of traffic monitoring sensors for cost savings. In this work, we notice that traffic flow has a high correlation with road network, which was either completely ignored or simply treated as an external factor in previous works. To facilitate this problem, we propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that explicitly exploits the prior knowledge of road networks to fully learn the road-aware spatial distribution of fine-grained traffic flow. Specifically, a multi-directional 1D convolutional layer is first introduced to extract the semantic feature of the road network. Subsequently, we incorporate the road network feature and coarse-grained flow feature to regularize the short-range spatial distribution modeling of road-relative traffic flow. Furthermore, we take the road network feature as a query to capture the long-range spatial distribution of traffic flow with a transformer architecture. Benefiting from the road-aware inference mechanism, our method can generate high-quality fine-grained traffic flow maps. Extensive experiments on three real-world datasets show that the proposed RATFM outperforms state-of-the-art models under various scenarios.

Traditional vs Deep Learning Algorithms in the Telecom Industry


The unprecedented growth of mobile devices, applications and services have placed the utmost demand on mobile and wireless networking infrastructure. Rapid research and development of 5G systems have found ways to support mobile traffic volumes, real-time extraction of fine-grained analytics, and agile management of network resources, so as to maximize user experience. Moreover, inference from heterogeneous mobile data from distributed devices experiences challenges due to computational and battery power limitations. As a result, models employed in the edge-based scenario are constrained to light-weight to achieve a trade-off between model complexity and accuracy. Also, model compression, pruning, and quantization are largely in place.

Matrix Completion With Variational Graph Autoencoders: Application in Hyperlocal Air Quality Inference Artificial Intelligence

Inferring air quality from a limited number of observations is an essential task for monitoring and controlling air pollution. Existing inference methods typically use low spatial resolution data collected by fixed monitoring stations and infer the concentration of air pollutants using additional types of data, e.g., meteorological and traffic information. In this work, we focus on street-level air quality inference by utilizing data collected by mobile stations. We formulate air quality inference in this setting as a graph-based matrix completion problem and propose a novel variational model based on graph convolutional autoencoders. Our model captures effectively the spatio-temporal correlation of the measurements and does not depend on the availability of additional information apart from the street-network topology. Experiments on a real air quality dataset, collected with mobile stations, shows that the proposed model outperforms state-of-the-art approaches.