Text Mining and Sentiment Analysis - A Primer


Over years, a crucial part of data-gathering behavior has revolved around what other people think. With the constantly growing popularity and availability of opinion-driven resources such as personal blogs and online review sites, new challenges and opportunities are emerging as people have started using advanced technologies to make decisions now. Sentiment analysis or opinion mining, refers to the use of computational linguistics, text analytics and natural language processing to identify and extract information from source materials. Sentiment analysis is considered one of the most popular applications of text analytics. The primary aspect of sentiment analysis includes data analysis on the body of the text for understanding the opinion expressed by it and other key factors comprising modality and mood.

Developing Corpora for Sentiment Analysis: The Case of Irony and Senti-TUT (Extended Abstract)

AAAI Conferences

This paper focusses on the main issues related to the development of a corpus for opinion and sentiment analysis, with a special attention to irony, and presents as a case study Senti-TUT, a project for Italian aimed at investigating sentiment and irony in social media. We present the Senti-TUT corpus, a collection of texts from Twitter annotated with sentiment polarity. We describe the dataset, the annotation, the methodologies applied and our investigations on two important features of irony: polarity reversing and emotion expressions.

Sentiment Analysis is difficult, but AI may have an answer.


Sentiment analysis is not an easy task to perform. Text data often comes pre-loaded with a lot of noise. Sarcasm is one such type of noise innately present in social media and product reviews which may interfere with the results. Sarcastic texts demonstrate a unique behaviour. Unlike a simple negation, a sarcastic sentence conveys a negative sentiment using only positive connotation of words.

Sentiment Analysis APIs Benchmark MonkeyLearn Blog


Sentiment analysis is a powerful example of how machine learning can help developers build better products with unique features. In short, sentiment analysis is the automated process of understanding if text written in a natural language (English, Spanish, etc.) is positive, neutral, or negative about a given subject. Nowadays, we have many instances where people express opinions and sentiment: tweets, comments, reviews, articles, chats, emails and more. One popular example is Twitter, where real-time opinions from millions of users are expressed constantly. Companies use sentiment analysis on Twitter to discover insights about their products and services.