Collaborating Authors

Sentiment Analysis: The Success For Brand Reputation Lies In Language


Sometimes it happens that brands need to have a sentiment analysis. Knowing how people talk about your brand is essential. What do your community members think about your company? Do they praise you or do they mock of you? Are they sincerely impressed or that enthusiasm hides a sarcastic and brutal critic?

Text Mining and Sentiment Analysis - A Primer


Over years, a crucial part of data-gathering behavior has revolved around what other people think. With the constantly growing popularity and availability of opinion-driven resources such as personal blogs and online review sites, new challenges and opportunities are emerging as people have started using advanced technologies to make decisions now. Sentiment analysis or opinion mining, refers to the use of computational linguistics, text analytics and natural language processing to identify and extract information from source materials. Sentiment analysis is considered one of the most popular applications of text analytics. The primary aspect of sentiment analysis includes data analysis on the body of the text for understanding the opinion expressed by it and other key factors comprising modality and mood.

Developing Corpora for Sentiment Analysis: The Case of Irony and Senti-TUT (Extended Abstract)

AAAI Conferences

This paper focusses on the main issues related to the development of a corpus for opinion and sentiment analysis, with a special attention to irony, and presents as a case study Senti-TUT, a project for Italian aimed at investigating sentiment and irony in social media. We present the Senti-TUT corpus, a collection of texts from Twitter annotated with sentiment polarity. We describe the dataset, the annotation, the methodologies applied and our investigations on two important features of irony: polarity reversing and emotion expressions.

Interpreting Verbal Irony: Linguistic Strategies and the Connection to the Type of Semantic Incongruity Artificial Intelligence

Human communication often involves the use of verbal irony or sarcasm, where the speakers usually mean the opposite of what they say. To better understand how verbal irony is expressed by the speaker and interpreted by the hearer we conduct a crowdsourcing task: given an utterance expressing verbal irony, users are asked to verbalize their interpretation of the speaker's ironic message. We propose a typology of linguistic strategies for verbal irony interpretation and link it to various theoretical linguistic frameworks. We design computational models to capture these strategies and present empirical studies aimed to answer three questions: (1) what is the distribution of linguistic strategies used by hearers to interpret ironic messages?; (2) do hearers adopt similar strategies for interpreting the speaker's ironic intent?; and (3) does the type of semantic incongruity in the ironic message (explicit vs. implicit) influence the choice of interpretation strategies by the hearers?