Framework and Schema for Semantic Web Knowledge Bases

AAAI Conferences

There is a growing need for scalable semantic web repositories which support inference and provide efficient queries. There is also a growing interest in representing uncertain knowledge in semantic web datasets and ontologies. In this paper, I present a bit vector schema specifically designed for RDF (Resource Description Framework) datasets. I propose a system for materializing and storing inferred knowledge using this schema. I show experimental results that demonstrate that this solution simplifies inference queries and drastically improves results. I also propose and describe a solution for materializing and persisting uncertain information and probabilities. Thresholds and bit vectors are used to provide efficient query access to this uncertain knowledge. My goal is to provide a semantic web repository that supports knowledge inference, uncertainty reasoning, and Bayesian networks, without sacrificing performance or scalability.

Eliciting Categorical Data for Optimal Aggregation

Neural Information Processing Systems

Models for collecting and aggregating categorical data on crowdsourcing platforms typically fall into two broad categories: those assuming agents honest and consistent but with heterogeneous error rates, and those assuming agents strategic and seek to maximize their expected reward. The former often leads to tractable aggregation of elicited data, while the latter usually focuses on optimal elicitation and does not consider aggregation. In this paper, we develop a Bayesian model, wherein agents have differing quality of information, but also respond to incentives. Our model generalizes both categories and enables the joint exploration of optimal elicitation and aggregation. This model enables our exploration, both analytically and experimentally, of optimal aggregation of categorical data and optimal multiple-choice interface design.

A Fuzzy Logic Approach to Target Tracking Artificial Intelligence

This paper discusses a target tracking problem in which no dynamic mathematical model is explicitly assumed. A nonlinear filter based on the fuzzy If-then rules is developed. A comparison with a Kalman filter is made, and empirical results show that the performance of the fuzzy filter is better. Intensive simulations suggest that theoretical justification of the empirical results is possible.

Bayesian Bias Mitigation for Crowdsourcing

Neural Information Processing Systems

Biased labelers are a systemic problem in crowdsourcing, and a comprehensive toolbox for handling their responses is still being developed. A typical crowdsourcing application can be divided into three steps: data collection, data curation, and learning. At present these steps are often treated separately. We present Bayesian Bias Mitigation for Crowdsourcing (BBMC), a Bayesian model to unify all three. Most data curation methods account for the {\it effects} of labeler bias by modeling all labels as coming from a single latent truth. Our model captures the {\it sources} of bias by describing labelers as influenced by shared random effects. This approach can account for more complex bias patterns that arise in ambiguous or hard labeling tasks and allows us to merge data curation and learning into a single computation. Active learning integrates data collection with learning, but is commonly considered infeasible with Gibbs sampling inference. We propose a general approximation strategy for Markov chains to efficiently quantify the effect of a perturbation on the stationary distribution and specialize this approach to active learning. Experiments show BBMC to outperform many common heuristics.

HodgeRank With Information Maximization for Crowdsourced Pairwise Ranking Aggregation

AAAI Conferences

Recently, crowdsourcing has emerged as an effective paradigm for human-powered large scale problem solving in various domains. However, task requester usually has a limited amount of budget, thus it is desirable to have a policy to wisely allocate the budget to achieve better quality. In this paper, we study the principle of information maximization for active sampling strategies in the framework of HodgeRank, an approach based on Hodge Decomposition of pairwise ranking data with multiple workers. The principle exhibits two scenarios of active sampling: Fisher information maximization that leads to unsupervised sampling based on a sequential maximization of graph algebraic connectivity without considering labels; and Bayesian information maximization that selects samples with the largest information gain from prior to posterior, which gives a supervised sampling involving the labels collected. Experiments show that the proposed methods boost the sampling efficiency as compared to traditional sampling schemes and are thus valuable to practical crowdsourcing experiments.