Goto

Collaborating Authors

Financial Engineering and Artificial Intelligence in Python

#artificialintelligence

Preview this course - GET COUPON CODE Have you ever thought about what would happen if you combined the power of machine learning and artificial intelligence with financial engineering? Today, you can stop imagining, and start doing. This course will teach you the core fundamentals of financial engineering, with a machine learning twist. We will cover must-know topics in financial engineering, such as: Exploratory data analysis, significance testing, correlations, alpha and beta Time series analysis, simple moving average, exponentially-weighted moving average Holt-Winters exponential smoothing model Efficient Market Hypothesis Random Walk Hypothesis Time series forecasting ("stock price prediction") Modern portfolio theory Efficient frontier / Markowitz bullet Mean-variance optimization Maximizing the Sharpe ratio Convex optimization with Linear Programming and Quadratic Programming Capital Asset Pricing Model (CAPM) Algorithmic trading (VIP only) Statistical Factor Models (VIP only) Regime Detection with Hidden Markov Models (VIP only) In addition, we will look at various non-traditional techniques which stem purely from the field of machine learning and artificial intelligence, such as: Classification models Unsupervised learning Reinforcement learning and Q-learning ***VIP-only sections (get it while it lasts!) You will learn exactly why their methodology is fundamentally flawed and why their results are complete nonsense.


Financial Engineering and Artificial Intelligence in Python

#artificialintelligence

Have you ever thought about what would happen if you combined the power of machine learning and artificial intelligence with financial engineering? Today, you can stop imagining, and start doing. This course will teach you the core fundamentals of financial engineering, with a machine learning twist. We will learn about the greatest flub made in the past decade by marketers posing as "machine learning experts" who promise to teach unsuspecting students how to "predict stock prices with LSTMs". You will learn exactly why their methodology is fundamentally flawed and why their results are complete nonsense.


Financial Engineering and Artificial Intelligence in Python

#artificialintelligence

Have you ever thought about what would happen if you combined the power of machine learning and artificial intelligence with financial engineering? Today, you can stop imagining, and start doing. This course will teach you the core fundamentals of financial engineering, with a machine learning twist. We will learn about the greatest flub made in the past decade by marketers posing as "machine learning experts" who promise to teach unsuspecting students how to "predict stock prices with LSTMs". You will learn exactly why their methodology is fundamentally flawed and why their results are complete nonsense.


Financial Engineering and Artificial Intelligence in Python

#artificialintelligence

Created by Lazy Programmer Team, Lazy Programmer Inc.Preview this Course - GET COUPON CODE Have you ever thought about what would happen if you combined the power of machine learning and artificial intelligence with financial engineering? Today, you can stop imagining, and start doing. This course will teach you the core fundamentals of financial engineering, with a machine learning twist. We will cover must-know topics in financial engineering, such as: Exploratory data analysis, significance testing, correlations, alpha and beta Time series analysis, simple moving average, exponentially-weighted moving average Holt-Winters exponential smoothing model Efficient Market Hypothesis Random Walk Hypothesis Time series forecasting ("stock price prediction") Modern portfolio theory Efficient frontier / Markowitz bullet Mean-variance optimization Maximizing the Sharpe ratio Convex optimization with Linear Programming and Quadratic Programming Capital Asset Pricing Model (CAPM) Algorithmic trading (VIP only) Statistical Factor Models (VIP only) Regime Detection with Hidden Markov Models (VIP only) In addition, we will look at various non-traditional techniques which stem purely from the field of machine learning and artificial intelligence, such as: Classification models Unsupervised learning Reinforcement learning and Q-learning ***VIP-only sections (get it while it lasts!) You will learn exactly why their methodology is fundamentally flawed and why their results are complete nonsense.


Doubly Regularized Portfolio with Risk Minimization

AAAI Conferences

Due to recent empirical success, machine learning algorithms have drawn sufficient attention and are becoming important analysis tools in financial industry. In particular, as the core engine of many financial services such as private wealth and pension fund management, portfolio management calls for the application of those novel algorithms. Most of portfolio allocation strategies do not account for costs from market frictions such as transaction costs and capital gain taxes, as the complexity of sensible cost models often causes the induced problem intractable. In this paper, we propose a doubly regularized portfolio that provides a modest but effective solution to the above difficulty. Specifically, as all kinds of trading costs primarily root in large transaction volumes, to reduce volumes we synergistically combine two penalty terms with classic risk minimization models to ensure: (1) only a small set of assets are selected to invest in each period; (2) portfolios in consecutive trading periods are similar. To assess the new portfolio, we apply standard evaluation criteria and conduct extensive experiments on well-known benchmarks and market datasets. Compared with various state-of-the-art portfolios, the proposed portfolio demonstrates a superior performance of having both higher risk-adjusted returns and dramatically decreased transaction volumes.