Goto

Collaborating Authors

New Veggies for a Warming Planet - Issue 92: Frontiers

Nautilus

When you bite into an ear of fresh corn, you are eating something profoundly unnatural. A modern ear is a big, flavorful thing packed with 18 rows of plump kernels. Its sad-looking wild ancestor had just six to eight rows of kernels, looking more like something you'd weed out of your lawn than something you'd put on the grill. The juicy version we eat today is the result of thousands of years of breeding and selection. The same is true for most every modern crop: They have been genetically modified over and over to feed an ever-growing, urbanized population.


The new potato

Science

Breeders seek a breakthrough to help farmers facing an uncertain future. Diverse potatoes, such as these from Peru, will help breeders create resilient new varieties. On a bleak, brown hill here, David Ellis examines a test plot of potato plants and shakes his head. "They're dead, dead, dead," he says. Pests and lack of rain have laid waste to all 17 varieties that researchers had planted. It is a worrying sign for Ellis, the now-retired director of the gene bank at the International Potato Center (CIP) in Lima. People have grown potatoes in this rugged stretch of the Andes for thousands of years. In recent years, that task has gotten tougher, in part because of climate change. Drought and frost are striking more often.


Inner Workings: Crop researchers harness artificial intelligence to breed crops for the changing climate

#artificialintelligence

Until recently, the field of plant breeding looked a lot like it did in centuries past. A breeder might examine, for example, which tomato plants were most resistant to drought and then cross the most promising plants to produce the most drought-resistant offspring. This process would be repeated, plant generation after generation, until, over the course of roughly seven years, the breeder arrived at what seemed the optimal variety. Researchers at ETH Zürich use standard color images and thermal images collected by drone to determine how plots of wheat with different genotypes vary in grain ripeness. Image credit: Norbert Kirchgessner (ETH Zürich, Zürich, Switzerland). Now, with the global population expected to swell to nearly 10 billion by 2050 (1) and climate change shifting growing conditions (2), crop breeder and geneticist Steven Tanksley doesn’t think plant breeders have that kind of time. “We have to double the productivity per acre of our major crops if we’re going to stay on par with the world’s needs,” says Tanksley, a professor emeritus at Cornell University in Ithaca, NY. To speed up the process, Tanksley and others are turning to artificial intelligence (AI). Using computer science techniques, breeders can rapidly assess which plants grow the fastest in a particular climate, which genes help plants thrive there, and which plants, when crossed, produce an optimum combination of genes for a given location, opting for traits that boost yield and stave off the effects of a changing climate. Large seed companies in particular have been using components of AI for more than a decade. With computing power rapidly advancing, the techniques are now poised to accelerate breeding on a broader scale. AI is not, however, a panacea. Crop breeders still grapple with tradeoffs such as higher yield versus marketable appearance. And even the most sophisticated AI …


From identifying plant pests to picking fruit, AI is reinventing how farmers produce your food

#artificialintelligence

These Indian subsistence farmers know just what to do: Pull out their smartphones and take their picture. The farmers then upload the images with GPS locations to a cloud-based artificial intelligence (AI) app named Plantix. The app identifies the crop type in the image and spits out a diagnosis of a disease, pest or nutrient deficiency. Plantix also aids farmers by recommending targeted biological or chemical treatments for ailing plants, reducing the volume of agrochemicals in groundwater and waterways that can result from overuse or incorrect application of herbicides and pesticides.


Reinventing Rice for a World Transformed by Climate Change

MIT Technology Review

Pamela Ronald stands in front of two rows of rice plants, sprouting from black plastic pots, in a stifling greenhouse on the edge of the University of California, Davis, campus. Researchers in Ronald's plant genetics lab starved the grasses of water for more than a week. The ones on the right, the control in the ongoing experiment, are yellowing and collapsing. The leaves in the adjacent plants, equipped with an added gene, are thick, tall, and green. The hope is that these or similar genetic alterations could help rice and other crops survive devastating droughts, preventing food shortages in some of the poorest parts of the world.