Collaborating Authors

Predicting Postoperative Atrial Fibrillation from Independent ECG Components

AAAI Conferences

Postoperative atrial fibrillation (PAF) occurs in 10% to 65% of the patients undergoing cardiothoracic surgery. It is associated with increased post-surgical mortality and morbidity, and results in longer and more expensive hospital stays. Accurately stratifying patients for PAF allows for selective use of prophylactic therapies (e.g., amiodarone). Unfortunately, existing tools to stratify patients for PAF fail to provide clinically adequate discrimination. Our research addresses this situation through the development of novel electrocardiographic(ECG) markers to identify patients at risk of PAF. As a first step, we explore an eigen-decomposition approach that partitions ECG signals into atrial and ventricular components by exploiting knowledge of the underlying cardiac cycle. We then quantify electrical instability in the myocardium manifesting as probabilistic variations in atrial ECG morphology to assess therisk of PAF. When evaluated on 385 patients undergoing cardiac surgery, this approach of stratifying patients for PAF through an analysis of morphologic variability within decoupled atrial ECG demonstrated substantial promise and improved net reclassification by over 53% relative to the use of baseline clinical characteristics.

Artificial intelligence in the diagnosis and management of arrhythmias


The field of cardiac electrophysiology (EP) had adopted simple artificial intelligence (AI) methodologies for decades. Recent renewed interest in deep learning techniques has opened new frontiers in electrocardiography analysis including signature identification of diseased states. Artificial intelligence advances coupled with simultaneous rapid growth in computational power, sensor technology, and availability of web-based platforms have seen the rapid growth of AI-aided applications and big data research. Changing lifestyles with an expansion of the concept of internet of things and advancements in telecommunication technology have opened doors to population-based detection of atrial fibrillation in ways, which were previously unimaginable. Artificial intelligence-aided advances in 3D cardiac imaging heralded the concept of virtual hearts and the simulation of cardiac arrhythmias. Robotics, completely non-invasive ablation therapy, and the concept of extended realities show promise to revolutionize the future of EP. In this review, we discuss the impact of AI and recent technological advances in all aspects of arrhythmia care. As artificial intelligence (AI) has entered the medical field in recent years, machine learning (ML) approaches have made progress in assisting healthcare professionals in optimizing personalized treatment in a given situation, in particular in electrocardiography and image interpretation. Artificial intelligence methodologies are increasingly being adopted into all aspects of patient care and are paving the way to minimally invasive or non-invasive treatment modalities. This article offers a state-of-the-art overview on milestones achieved, but also on future integration of this information into diagnostic and therapeutic measures, and its likely impact on all aspects of arrhythmia care.

ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure


Heart failure (HF) is a leading cause of death. Early intervention is the key to reduce HF-related morbidity and mortality. Data from the baseline visits (1987–89) of the Atherosclerosis Risk in Communities (ARIC) study was used. Incident hospitalized HF events were ascertained by ICD codes. Participants with good quality baseline ECGs were included. Participants with prevalent HF were excluded. ECG-artificial intelligence (AI) model to predict HF was created as a deep residual convolutional neural network (CNN) utilizing standard 12-lead ECG. The area under the receiver operating characteristic curve (AUC) was used to evaluate prediction models including (CNN), light gradient boosting machines (LGBM), and Cox proportional hazards regression. A total of 14 613 (45% male, 73% of white, mean age standard deviation of 54 5) participants were eligible.

Predicting risk of sudden cardiac death in patients with cardiac sarcoidosis using multimodality imaging and personalized heart modeling in a multivariable classifier


Cardiac sarcoidosis (CS), an inflammatory disease characterized by formation of granulomas in the heart, is associated with high risk of sudden cardiac death (SCD) from ventricular arrhythmias. Current “one-size-fits-all” guidelines for SCD risk assessment in CS result in insufficient appropriate primary prevention. Here, we present a two-step precision risk prediction technology for patients with CS. First, a patient’s arrhythmogenic propensity arising from heterogeneous CS-induced ventricular remodeling is assessed using a novel personalized magnetic-resonance imaging and positron-emission tomography fusion mechanistic model. The resulting simulations of arrhythmogenesis are fed, together with a set of imaging and clinical biomarkers, into a supervised classifier. In a retrospective study of 45 patients, the technology achieved testing results of 60% sensitivity [95% confidence interval (CI): 57-63%], 72% specificity [95% CI: 70-74%], and 0.754 area under the receiver operating characteristic curve [95% CI: 0.710-0.797]. It outperformed clinical metrics, highlighting its potential to transform CS risk stratification.

A method using deep learning to discover new predictors of CRT response from mechanical dyssynchrony on gated SPECT MPI Artificial Intelligence

Background. Studies have shown that the conventional left ventricular mechanical dyssynchrony (LVMD) parameters have their own statistical limitations. The purpose of this study is to extract new LVMD parameters from the phase analysis of gated SPECT MPI by deep learning to help CRT patient selection. Methods. One hundred and three patients who underwent rest gated SPECT MPI were enrolled in this study. CRT response was defined as a decrease in left ventricular end-systolic volume (LVESV) >= 15% at 6 +- 1 month follow up. Autoencoder (AE), an unsupervised deep learning method, was trained by the raw LV systolic phase polar maps to extract new LVMD parameters, called AE-based LVMD parameters. Correlation analysis was used to explain the relationships between new parameters with conventional LVMD parameters. Univariate and multivariate analyses were used to establish a multivariate model for predicting CRT response. Results. Complete data were obtained in 102 patients, 44.1% of them were classified as CRT responders. AE-based LVMD parameter was significant in the univariate (OR 1.24, 95% CI 1.07 - 1.44, P = 0.006) and multivariate analyses (OR 1.03, 95% CI 1.01 - 1.06, P = 0.006). Moreover, it had incremental value over PSD (AUC 0.72 vs. 0.63, LH 8.06, P = 0.005) and PBW (AUC 0.72 vs. 0.64, LH 7.87, P = 0.005), combined with significant clinic characteristics, including LVEF and gender. Conclusions. The new LVMD parameters extracted by autoencoder from the baseline gated SPECT MPI has the potential to improve the prediction of CRT response.