Bandit Learning Through Biased Maximum Likelihood Estimation Machine Learning

We propose BMLE, a new family of bandit algorithms, that are formulated in a general way based on the Biased Maximum Likelihood Estimation method originally appearing in the adaptive control literature. We design the cost-bias term to tackle the exploration and exploitation tradeoff for stochastic bandit problems. We provide an explicit closed form expression for the index of an arm for Bernoulli bandits, which is trivial to compute. We also provide a general recipe for extending the BMLE algorithm to other families of reward distributions. We prove that for Bernoulli bandits, the BMLE algorithm achieves a logarithmic finite-time regret bound and hence attains order-optimality. Through extensive simulations, we demonstrate that the proposed algorithms achieve regret performance comparable to the best of several state-of-the-art baseline methods, while having a significant computational advantage in comparison to other best performing methods. The generality of the proposed approach makes it possible to address more complex models, including general adaptive control of Markovian systems.

Internet of Things and Bayesian Networks


As big data becomes more of cliche with every passing day, do you feel Internet of Things is the next marketing buzzword to grapple our lives. So what exactly is Internet of Thing (IoT) and why are we going to hear more about it in the coming days. Internet of thing (IoT) today denotes advanced connectivity of devices,systems and services that goes beyond machine to machine communications and covers a wide variety of domains and applications specifically in the manufacturing and power, oil and gas utilities. An application in IoT can be an automobile that has built in sensors to alert the driver when the tyre pressure is low. Built-in sensors on equipment's present in the power plant which transmit real time data and thereby enable to better transmission planning,load balancing.

Bayesian Anomaly Detection Using Extreme Value Theory Machine Learning

Data-driven anomaly detection methods typically build a model for the normal behavior of the target system, and score each data instance with respect to this model. A threshold is invariably needed to identify data instances with high (or low) scores as anomalies. This presents a practical limitation on the applicability of such methods, since most methods are sensitive to the choice of the threshold, and it is challenging to set optimal thresholds. We present a probabilistic framework to explicitly model the normal and anomalous behaviors and probabilistically reason about the data. An extreme value theory based formulation is proposed to model the anomalous behavior as the extremes of the normal behavior. As a specific instantiation, a joint non-parametric clustering and anomaly detection algorithm (INCAD) is proposed that models the normal behavior as a Dirichlet Process Mixture Model. A pseudo-Gibbs sampling based strategy is used for inference. Results on a variety of data sets show that the proposed method provides effective clustering and anomaly detection without requiring strong initialization and thresholding parameters.