Goto

Collaborating Authors

Blending Ensemble Machine Learning With Python

#artificialintelligence

Blending is an ensemble machine learning algorithm. It is a colloquial name for stacked generalization or stacking ensemble where instead of fitting the meta-model on out-of-fold predictions made by the base model, it is fit on predictions made on a holdout dataset. Blending was used to describe stacking models that combined many hundreds of predictive models by competitors in the $1M Netflix machine learning competition, and as such, remains a popular technique and name for stacking in competitive machine learning circles, such as the Kaggle community. In this tutorial, you will discover how to develop and evaluate a blending ensemble in python. Blending Ensemble Machine Learning With Python Photo by Nathalie, some rights reserved.


Ensemble Machine Learning With Python (7-Day Mini-Course)

#artificialintelligence

Ensemble learning refers to machine learning models that combine the predictions from two or more models. Ensembles are an advanced approach to machine learning that are often used when the capability and skill of the predictions are more important than using a simple and understandable model. As such, they are often used by top and winning participants in machine learning competitions like the One Million Dollar Netflix Prize and Kaggle Competitions. Modern machine learning libraries like scikit-learn Python provide a suite of advanced ensemble learning methods that are easy to configure and use correctly without data leakage, a common concern when using ensemble algorithms. In this crash course, you will discover how you can get started and confidently bring ensemble learning algorithms to your predictive modeling project with Python in seven days.


How to Use Out-of-Fold Predictions in Machine Learning

#artificialintelligence

Machine learning algorithms are typically evaluated using resampling techniques such as k-fold cross-validation. During the k-fold cross-validation process, predictions are made on test sets comprised of data not used to train the model. These predictions are referred to as out-of-fold predictions, a type of out-of-sample predictions. Out-of-fold predictions play an important role in machine learning in both estimating the performance of a model when making predictions on new data in the future, so-called the generalization performance of the model, and in the development of ensemble models. In this tutorial, you will discover a gentle introduction to out-of-fold predictions in machine learning.


How to Develop a Stacking Ensemble for Deep Learning Neural Networks in Python With Keras

#artificialintelligence

Model averaging is an ensemble technique where multiple sub-models contribute equally to a combined prediction. Model averaging can be improved by weighting the contributions of each sub-model to the combined prediction by the expected performance of the submodel. This can be extended further by training an entirely new model to learn how to best combine the contributions from each submodel. This approach is called stacked generalization, or stacking for short, and can result in better predictive performance than any single contributing model. In this tutorial, you will discover how to develop a stacked generalization ensemble for deep learning neural networks. How to Develop a Stacking Ensemble for Deep Learning Neural Networks in Python With Keras Photo by David Law, some rights reserved. A model averaging ensemble combines the predictions from multiple trained models.


A Comprehensive Guide to Ensemble Learning - What Exactly Do You Need to Know - neptune.ai

#artificialintelligence

Ensemble learning techniques have been proven to yield better performance on machine learning problems. We can use these techniques for regression as well as classification problems. The final prediction from these ensembling techniques is obtained by combining results from several base models. Averaging, voting and stacking are some of the ways the results are combined to obtain a final prediction. In this article, we will explore how ensemble learning can be used to come up with optimal machine learning models. Ensemble learning is a combination of several machine learning models in one problem.