Collaborating Authors

Multi-scale Neural Networks for Retinal Blood Vessels Segmentation Machine Learning

Existing supervised approaches didn't make use of the low-level features which are actually effective to this task. And another deficiency is that they didn't consider the relation between pixels, which means effective features are not extracted. In this paper, we proposed a novel convolutional neural network which make sufficient use of low-level features together with high-level features and involves atrous convolution to get multi-scale features which should be considered as effective features. Our model is tested on three standard benchmarks - DRIVE, STARE, and CHASE databases. The results presents that our model significantly outperforms existing approaches in terms of accuracy, sensitivity, specificity, the area under the ROC curve and the highest prediction speed. Our work provides evidence of the power of wide and deep neural networks in retinal blood vessels segmentation task which could be applied on other medical images tasks.

Ensemble of Deep Convolutional Neural Networks for Learning to Detect Retinal Vessels in Fundus Images Machine Learning

Vision impairment due to pathological damage of the retina can largely be prevented through periodic screening using fundus color imaging. However the challenge with large scale screening is the inability to exhaustively detect fine blood vessels crucial to disease diagnosis. In this work we present a computational imaging framework using deep and ensemble learning for reliable detection of blood vessels in fundus color images. An ensemble of deep convolutional neural networks is trained to segment vessel and non-vessel areas of a color fundus image. During inference, the responses of the individual ConvNets of the ensemble are averaged to form the final segmentation. In experimental evaluation with the DRIVE database, we achieve the objective of vessel detection with maximum average accuracy of 94.7\% and area under ROC curve of 0.9283.

Ophthalmic Diagnosis and Deep Learning -- A Survey Machine Learning

This survey paper presents a detailed overview of the applications for deep learning in ophthalmic diagnosis using retinal imaging techniques. The need of automated computer-aided deep learning models for medical diagnosis is discussed. Then a detailed review of the available retinal image datasets is provided. Applications of deep learning for segmentation of optic disk, blood vessels and retinal layer as well as detection of red lesions are reviewed.Recent deep learning models for classification of retinal disease including age-related macular degeneration, glaucoma, diabetic macular edema and diabetic retinopathy are also reported.

Towards Adversarial Retinal Image Synthesis Machine Learning

Synthesizing images of the eye fundus is a challenging task that has been previously approached by formulating complex models of the anatomy of the eye. New images can then be generated by sampling a suitable parameter space. In this work, we propose a method that learns to synthesize eye fundus images directly from data. For that, we pair true eye fundus images with their respective vessel trees, by means of a vessel segmentation technique. These pairs are then used to learn a mapping from a binary vessel tree to a new retinal image. For this purpose, we use a recent image-to-image translation technique, based on the idea of adversarial learning. Experimental results show that the original and the generated images are visually different in terms of their global appearance, in spite of sharing the same vessel tree. Additionally, a quantitative quality analysis of the synthetic retinal images confirms that the produced images retain a high proportion of the true image set quality.

Retinal vessel segmentation based on Fully Convolutional Neural Networks Machine Learning

The retinal vascular condition is a reliable biomarker of several ophthalmologic and cardiovascular diseases, so automatic vessel segmentation may be crucial to diagnose and monitor them. In this paper, we propose a novel method that combines the multiscale analysis provided by the Stationary Wavelet Transform with a multiscale Fully Convolutional Neural Network to cope with the varying width and direction of the vessel structure in the retina. Our proposal uses rotation operations as the basis of a joint strategy for both data augmentation and prediction, which allows us to explore the information learned during training to refine the segmentation. The method was evaluated on three publicly available databases, achieving an average accuracy of 0.9576, 0.9694, and 0.9653, and average area under the ROC curve of 0.9821, 0.9905, and 0.9855 on the DRIVE, STARE, and CHASE_DB1 databases, respectively. It also appears to be robust to the training set and to the inter-rater variability, which shows its potential for real-world applications.