Goto

Collaborating Authors

How Bayesian Machine Learning Works

#artificialintelligence

Classical statistics is said to follow the frequentist approach because it interprets probability as the relative frequency of an event over the long run that is, after observing many trials. In the context of probabilities, an event is a combination of one or more elementary outcomes of an experiment, such as any of six equal results in rolls of two dice or an asset price dropping by 10 percent or more on a given day.


Bayesian Statistics Explained in Simple English For Beginners

#artificialintelligence

Bayesian Statistics continues to remain incomprehensible in the ignited minds of many analysts. Being amazed by the incredible power of machine learning, a lot of us have become unfaithful to statistics. Our focus has narrowed down to exploring machine learning. We fail to understand that machine learning is only one way to solve real world problems. In several situations, it does not help us solve business problems, even though there is data involved in these problems. To say the least, knowledge of statistics will allow you to work on complex analytical problems, irrespective of the size of data. In 1770s, Thomas Bayes introduced'Bayes Theorem'.


Bayesian Statistics for Data Science – Towards Data Science

#artificialintelligence

Frequentist Statistics tests whether an event (hypothesis) occurs or not. It calculates the probability of an event in the long run of the experiment. A very common flaw found in frequentist approach i.e. dependence of the result of an experiment on the number of times the experiment is repeated. Bayesian statistics is a mathematical procedure that applies probabilities to statistical problems. It provides people the tools to update their beliefs in the evidence of new data.


Bayesian Statistics explained to Beginners in Simple English

#artificialintelligence

Bayesian Statistics continues to remain incomprehensible in the ignited minds of many analysts. Being amazed by the incredible power of machine learning, a lot of us have become unfaithful to statistics. Our focus has narrowed down to exploring machine learning. We fail to understand that machine learning is only one way to solve real world problems. In several situations, it does not help us solve business problems, even though there is data involved in these problems. To say the least, knowledge of statistics will allow you to work on complex analytical problems, irrespective of the size of data. In 1770s, Thomas Bayes introduced'Bayes Theorem'.


Frequentist vs Bayesian Statistics: Which One Is Best! - Experfy Insights

#artificialintelligence

While performing statistical analysis, oftentimes, we face the dilemma about Frequentist Vs Bayesian Strategy for the problem. This choice becomes critical when working with limited-sized datasets. And, if you use one method over the other without having a fundamental understanding of the assumptions and limitations of the two approaches, then you could increase your chance of making a wrong inference. The philosophical divide between Frequentist Vs Bayesian statistics goes back 250 years. The Bayesian approach dominated 19th-century statistics, while the Frequentist approach gained popularity in the 20th century.