Goto

Collaborating Authors

07 -- Hands On ML -- Ensemble

#artificialintelligence

Ensemble Learning is taking the predictions of multiple models and assume the output to be having the most votes. When you train multiple Decision Trees each on some random sampling of the dataset and for predictions you take predictions of all the trees, the output class would be the class which gets the most votes. This approach is called Random Forest. Voting classifier is when you train the data on multiple classifier such as Logistic Regression, SVM, RF and other classifiers and the majority vote is the predicted output class ie hard classifier. Voting can also be taken as soft by taking argmax of the outputs.


Discussion of Ensemble Learning under the Era of Deep Learning

arXiv.org Artificial Intelligence

Due to the dominant position of deep learning (mostly deep neural networks) in various artificial intelligence applications, recently, ensemble learning based on deep neural networks (ensemble deep learning) has shown significant performances in improving the generalization of learning system. However, since modern deep neural networks usually have millions to billions of parameters, the time and space overheads for training multiple base deep learners and testing with the ensemble deep learner are far greater than that of traditional ensemble learning. Though several algorithms of fast ensemble deep learning have been proposed to promote the deployment of ensemble deep learning in some applications, further advances still need to be made for many applications in specific fields, where the developing time and computing resources are usually restricted or the data to be processed is of large dimensionality. An urgent problem needs to be solved is how to take the significant advantages of ensemble deep learning while reduce the required time and space overheads so that many more applications in specific fields can benefit from it. For the alleviation of this problem, it is necessary to know about how ensemble learning has developed under the era of deep learning. Thus, in this article, we present discussion focusing on data analyses of published works, the methodology and unattainability of traditional ensemble learning, and recent developments of ensemble deep learning. We hope this article will be helpful to realize the technical challenges faced by future developments of ensemble learning under the era of deep learning.


Applying an Ensemble Learning Method for Improving Multi-label Classification Performance

arXiv.org Machine Learning

In recent years, multi-label classification problem has become a controversial issue. In this kind of classification, each sample is associated with a set of class labels. Ensemble approaches are supervised learning algorithms in which an operator takes a number of learning algorithms, namely base-level algorithms and combines their outcomes to make an estimation. The simplest form of ensemble learning is to train the base-level algorithms on random subsets of data and then let them vote for the most popular classifications or average the predictions of the base-level algorithms. In this study, an ensemble learning method is proposed for improving multi-label classification evaluation criteria. We have compared our method with well-known base-level algorithms on some data sets. Experiment results show the proposed approach outperforms the base well-known classifiers for the multi-label classification problem.


Improve Machine Learning Results with Ensemble Learning

#artificialintelligence

NOTE: This article assumes that you are familiar with a basic understanding of Machine Learning algorithms. Suppose you want to buy a new mobile phone, will you walk directly to the first shop and purchase the mobile based on the advice of shopkeeper? You would visit some of the online mobile seller sites where you can see a variety of mobile phones, their specifications, features, and prices. You may also consider the reviews that people posted on the site. However, you probably might also ask your friends and colleagues for their opinions.


Ensemble Learning to Improve Machine Learning Results

#artificialintelligence

Ensemble methods are meta-algorithms that combine several machine learning techniques into one predictive model in order to decrease variance (bagging), bias (boosting), or improve predictions (stacking). Most ensemble methods use a single base learning algorithm to produce homogeneous base learners, i.e. learners of the same type, leading to homogeneous ensembles. There are also some methods that use heterogeneous learners, i.e. learners of different types, leading to heterogeneous ensembles. In order for ensemble methods to be more accurate than any of its individual members, the base learners have to be as accurate as possible and as diverse as possible. Bagging stands for bootstrap aggregation.