Machine Learning Tutorial: The Naive Bayes Text Classifier

#artificialintelligence

In this tutorial we will discuss about Naive Bayes text classifier. Naive Bayes is one of the simplest classifiers that one can use because of the simple mathematics that are involved and due to the fact that it is easy to code with every standard programming language including PHP, C#, JAVA etc. Update: The Datumbox Machine Learning Framework is now open-source and free to download. Note that some of the techniques described below are used on Datumbox's Text Analysis service and they power up our API. The Naive Bayes classifier is a simple probabilistic classifier which is based on Bayes theorem with strong and naïve independence assumptions. It is one of the most basic text classification techniques with various applications in email spam detection, personal email sorting, document categorization, sexually explicit content detection, language detection and sentiment detection.


Machine Learning for Beginners, Part 7 – Naïve Bayes

#artificialintelligence

In my last blog, I discussed k-Nearest Neighbor machine learning algorithms with an example that was hopefully easy to understand for beginners. During the summer of 2017 I began a five-part series on types of machine learning. That series included more details about K-means clustering, Singular Value Decomposition, Principal Component Analysis, Apriori and Frequent Pattern-Growth. Today I want to expand on the ideas presented in my Naive Bayes "Data Science in 90 Seconds" You Tube video and continue the discussion in plain language.


How to Develop a Naive Bayes Classifier from Scratch in Python

#artificialintelligence

Classification is a predictive modeling problem that involves assigning a label to a given input data sample. The problem of classification predictive modeling can be framed as calculating the conditional probability of a class label given a data sample. Bayes Theorem provides a principled way for calculating this conditional probability, although in practice requires an enormous number of samples (very large-sized dataset) and is computationally expensive. Instead, the calculation of Bayes Theorem can be simplified by making some assumptions, such as each input variable is independent of all other input variables. Although a dramatic and unrealistic assumption, this has the effect of making the calculations of the conditional probability tractable and results in an effective classification model referred to as Naive Bayes.


6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python)

@machinelearnbot

Here's a situation you've got into: You are working on a classification problem and you have generated your set of hypothesis, created features and discussed the importance of variables. Within an hour, stakeholders want to see the first cut of the model. You have hunderds of thousands of data points and quite a few variables in your training data set. In such situation, if I were at your place, I would have used'Naive Bayes', which can be extremely fast relative to other classification algorithms. It works on Bayes theorem of probability to predict the class of unknown data set.


6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python)

#artificialintelligence

You are working on a classification problem and you have generated your set of hypothesis, created features and discussed the importance of variables. Within an hour, stakeholders want to see the first cut of the model. You have hunderds of thousands of data points and quite a few variables in your training data set. In such situation, if I were at your place, I would have used'Naive Bayes', which can be extremely fast relative to other classification algorithms. It works on Bayes theorem of probability to predict the class of unknown data set.