Software for Data Mining, Analytics,Data Science, and Knowledge Discovery

AITopics Original Links

Classification software: building models to separate 2 or more discrete classes using Multiple methods Decision Tree Rules Neural Bayesian SVM Genetic, Rough Sets, Fuzzy Logic and other approaches Analysis of results, ROC Social Network Analysis, Link Analysis, and Visualization software Text Analysis, Text Mining, and Information Retrieval (IR) Web Analytics and Social Media Analytics software. BI (Business Intelligence), Database and OLAP software Data Transformation, Data Cleaning, Data Cleansing Libraries, Components and Developer Kits for creating embedded data mining applications Web Content Mining, web scraping, screen scraping.


Microsoft, Machine Learning, And "Data Wrangling": ML Leverages Business Intelligence For B2B

#artificialintelligence

"Data wrangling" was an interesting phrase to hear in the machine learning (ML) presentations at Microsoft Ignite. Interesting because data wrangling is from business intelligence (BI), not from artificial intelligence (AI). Microsoft understands ML incorporates concepts from both disciplines. Further discussions point to another key point: Microsoft understands that business-to-business (B2B) is just as fertile for ML as business-to-consumer (B2C). ML applications with the most press are voice, augmented reality and autonomous vehicles.


Intro to Machine Learning in H2O

#artificialintelligence

The focus of this workshop is machine learning using the H2O R and Python packages. H2O is an open source distributed machine learning platform designed for big data, with the added benefit that it's easy to use on a laptop (in addition to a multi-node Hadoop or Spark cluster). The core machine learning algorithms of H2O are implemented in high-performance Java; however, fully featured APIs are available in R, Python, Scala, REST/JSON and also through a web interface. Since H2O's algorithm implementations are distributed, this allows the software to scale to very large datasets that may not fit into RAM on a single machine. H2O currently features distributed implementations of generalized linear models, gradient boosting machines, random forest, deep neural nets, dimensionality reduction methods (PCA, GLRM), clustering algorithms (K-means), and anomaly detection methods, among others.


Fast and Scalable Machine Learning in R and Python with H2O

#artificialintelligence

The focus of this talk is scalable machine learning using the H2O R and Python packages. H2O is an open source distributed machine learning platform designed for big data, with the added benefit that it's easy to use on a laptop (in addition to a multi-node Hadoop or Spark cluster). The core machine learning algorithms of H2O are implemented in high-performance Java; however, fully featured APIs are available in R, Python, Scala, REST/JSON and also through a web interface. Since H2O's algorithm implementations are distributed, this allows the software to scale to very large datasets that may not fit into RAM on a single machine. H2O currently features distributed implementations of generalized linear models, gradient boosting machines, random forest, deep neural nets, dimensionality reduction methods (PCA, GLRM), clustering algorithms (K-means), and anomaly detection methods, among others.


The real big-data problem and why only machine learning can fix it - SiliconANGLE

#artificialintelligence

Why do so many companies still struggle to build a smooth-running pipeline from data to insights? They invest in heavily hyped machine-learning algorithms to analyze data and make business predictions. Then, inevitably, they realize that algorithms aren't magic; if they're fed junk data, their insights won't be stellar. So they employ data scientists that spend 90% of their time washing and folding in a data-cleaning laundromat, leaving just 10% of their time to do the job for which they were hired. What is flawed about this process is that companies only get excited about machine learning for end-of-the-line algorithms; they should apply machine learning just as liberally in the early cleansing stages instead of relying on people to grapple with gargantuan data sets, according to Andy Palmer, co-founder and chief executive officer of Tamr Inc., which helps organizations use machine learning to unify their data silos.