Goto

Collaborating Authors

A Visual Language for Composable Inductive Programming

arXiv.org Artificial Intelligence

We present Zoea Visual which is a visual programming language based on the Zoea composable inductive programming language. Zoea Visual allows users to create software directly from a specification that resembles a set of functional test cases. Programming with Zoea Visual involves the definition of a data flow model of test case inputs, optional intermediate values, and outputs. Data elements are represented visually and can be combined to create structures of any complexity. Data flows between elements provide additional information that allows the Zoea compiler to generate larger programs in less time. This paper includes an overview of the language. The benefits of the approach and some possible future enhancements are also discussed.


Reinforcement Learning and Adaptive Sampling for Optimized DNN Compilation

arXiv.org Machine Learning

Achieving faster execution with shorter compilation time can enable further diversity and innovation in neural networks. However, the current paradigm of executing neural networks either relies on hand-optimized libraries, traditional compilation heuristics, or very recently, simulated annealing and genetic algorithms. Our work takes a unique approach by formulating compiler optimizations for neural networks as a reinforcement learning problem, whose solution takes fewer steps to converge. This solution, dubbed ReLeASE, comes with a sampling algorithm that leverages clustering to focus the costly samples (real hardware measurements) on representative points, subsuming an entire subspace. Our adaptive sampling not only reduces the number of samples, but also improves the quality of samples for better exploration in shorter time. As such, experimentation with real hardware shows that reinforcement learning with adaptive sampling provides 4.45x speed up in optimization time over AutoTVM, while also improving inference time of the modern deep networks by 5.6%. Further experiments also confirm that our adaptive sampling can even improve AutoTVM's simulated annealing by 4.00x.


Multi-Pass High-Level Presolving

AAAI Conferences

Presolving is a preprocessing step performed by optimisation solvers to improve performance. However, these solvers cannot easily exploit high-level model structure as available in modelling languages such as MiniZinc or Essence. We present an integrated approach that performs presolving as a separate pass during the compilation from high-level optimisation models to solver-level programs. The compiler produces a representation of the model that is suitable for presolving by retaining some of the high-level structure. It then uses information learned during presolving to generate the final solver-level representation. Our approach introduces the novel concept of variable paths that identify variables which are common across multiple compilation passes, increasing the amount of shared information. We show that this approach can lead to both faster compilation and more efficient solver-level programs.


Collective Mind: cleaning up the research and experimentation mess in computer engineering using crowdsourcing, big data and machine learning

arXiv.org Machine Learning

Software and hardware co-design and optimization of HPC systems has become intolerably complex, ad-hoc, time consuming and error prone due to enormous number of available design and optimization choices, complex interactions between all software and hardware components, and multiple strict requirements placed on performance, power consumption, size, reliability and cost. We present our novel long-term holistic and practical solution to this problem based on customizable, plugin-based, schema-free, heterogeneous, open-source Collective Mind repository and infrastructure with unified web interfaces and on-line advise system. This collaborative framework distributes analysis and multi-objective off-line and on-line auto-tuning of computer systems among many participants while utilizing any available smart phone, tablet, laptop, cluster or data center, and continuously observing, classifying and modeling their realistic behavior. Any unexpected behavior is analyzed using shared data mining and predictive modeling plugins or exposed to the community at cTuning.org for collaborative explanation, top-down complexity reduction, incremental problem decomposition and detection of correlating program, architecture or run-time properties (features). Gradually increasing optimization knowledge helps to continuously improve optimization heuristics of any compiler, predict optimizations for new programs or suggest efficient run-time (online) tuning and adaptation strategies depending on end-user requirements. We decided to share all our past research artifacts including hundreds of codelets, numerical applications, data sets, models, universal experimental analysis and auto-tuning pipelines, self-tuning machine learning based meta compiler, and unified statistical analysis and machine learning plugins in a public repository to initiate systematic, reproducible and collaborative research, development and experimentation with a new publication model where experiments and techniques are validated, ranked and improved by the community.


tensorflow/swift

@machinelearnbot

The core graph program extraction algorithm, automatic differentiation, and Python language interoperability features of Swift for TensorFlow can be implemented for other programming languages, and we are occasionally asked why we didn't use some other one for this project. The engineers on the project were previously familiar with Swift (and several other languages), but the choice was guided by the goals of our project, which imposed specific technical requirements (explained below). This choice was also discussed extensively, debated with coworkers and other interested engineers, and we concluded that Swift was the best direction. In this document we're sharing our deliberation process with the community to help explain our decisions. That said, while our choice of language was guided by our specific project goals, we would love to see wider application of these techniques and ideas in the context of other programming languages! If you are interested in pursuing a similar project, please reach out to us and we will happily share our expertise. As discussed in the design overview document our project goal is to improve usability of TensorFlow. We quickly realized that our core static analysis-based Graph Program Extraction algorithm would not work well for Python given its highly dynamic nature. This led us down the path of having to pick another language to work with, and we wanted to approach this methodically. As such, we defined goals for the project, explored which properties of a programming language are important to achieve those goals, and then evaluated a lot of languages against these properties. You already know the outcome--we eventually settled on Swift.