Sony Partners With CMU to Develop Food Prep and Delivery Robots

IEEE Spectrum Robotics Channel

Last week, Sony and Carnegie Mellon University announced a collaboration "on artificial intelligence (AI) and robotics research." Usually, these announcements pretty much just end there, with the implication being that giant corporation X will support academic research institution Y by funding ongoing research or a string of new initiatives. This Sony/CMU announcement is a bit more exciting because of how specific it is: The project will be about food. Researchers will focus on defining the domain of food ordering, preparation, and delivery. Initially, they will build upon existing manipulation robots and mobile robots, and will plan on developing new domain-specific robots for predefined food preparation items and for mobility in a limited confined space.


Reconfigurable Path Planning for an Autonomous Unmanned Aerial Vehicle

AAAI Conferences

In this paper, we present a motion planning framework for a fully deployed autonomous unmanned aerial vehicle which integrates two sample-based motion planning techniques, Probabilistic Roadmaps and Rapidly Exploring Random Trees. Additionally, we incorporate dynamic reconfigurability into the framework by integrating the motion planners with the control kernel of the UAV in a novel manner with little modification to the original algorithms. The framework has been verified through simulation and in actual flight. Empirical results show that these techniques used with such a framework offer a surprisingly efficient method for dynamically reconfiguring a motion plan based on unforeseen contingencies which may arise during the execution of a plan. The framework is generic and can be used for additional platforms.


Intel's tiny Euclid computer can be the brains of a robot

PCWorld

A compact computer called Euclid from Intel should make the development of robots much easier. Euclid looks much like the Kinect camera for Xbox consoles, but it's a self-contained PC that can be the guts of a robot. It's possible to install the Euclid computer where the "eyes" of a human-like robot would be typically placed. Intel demonstrated the Euclid computer in a robot moving on stage during CEO Brian Krzanich's keynote at the Intel Developer Forum on Tuesday. Euclid has a 3D RealSense camera that can serve as the eyes in a robot, capturing images in real-time.



Human eyes assist drones, teach machines to see

#artificialintelligence

Drone images accumulate much faster than they can be analyzed. Researchers have developed a new approach that combines crowdsourcing and machine learning to speed up the process. Who would win in a real-life game of "Where's Waldo," humans or computers? A recent study suggests that when speed and accuracy are critical, an approach combing both human and machine intelligence would take the prize. With drones being used to monitor everything natural disaster sites, pollution, or wildlife populations, analyzing drone images in real-time has become a critically important big data challenge.