Collaborating Authors

Tackling Climate Change with Machine Learning Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.

AI is reinventing the way we invent


Amgen's drug discovery group is a few blocks beyond that. Until recently, Barzilay, one of the world's leading researchers in artificial intelligence, hadn't given much thought to these nearby buildings full of chemists and biologists. But as AI and machine learning began to perform ever more impressive feats in image recognition and language comprehension, she began to wonder: could it also transform the task of finding new drugs? The problem is that human researchers can explore only a tiny slice of what is possible. It's estimated that there are as many as 1060 potentially drug-like molecules--more than the number of atoms in the solar system. But traversing seemingly unlimited possibilities is what machine learning is good at. Trained on large databases of existing molecules and their properties, the programs can explore all possible related molecules.

A Review of Deep Learning with Special Emphasis on Architectures, Applications and Recent Trends Machine Learning

Deep learning (DL) has solved a problem that as little as five years ago was thought by many to be intractable - the automatic recognition of patterns in data; and it can do so with accuracy that often surpasses human beings. It has solved problems beyond the realm of traditional, hand-crafted machine learning algorithms and captured the imagination of practitioners trying to make sense out of the flood of data that now inundates our society. As public awareness of the efficacy of DL increases so does the desire to make use of it. But even for highly trained professionals it can be daunting to approach the rapidly increasing body of knowledge produced by experts in the field. Where does one start? How does one determine if a particular model is applicable to their problem? How does one train and deploy such a network? A primer on the subject can be a good place to start. With that in mind, we present an overview of some of the key multilayer ANNs that comprise DL. We also discuss some new automatic architecture optimization protocols that use multi-agent approaches. Further, since guaranteeing system uptime is becoming critical to many computer applications, we include a section on using neural networks for fault detection and subsequent mitigation. This is followed by an exploratory survey of several application areas where DL has emerged as a game-changing technology: anomalous behavior detection in financial applications or in financial time-series forecasting, predictive and prescriptive analytics, medical image processing and analysis and power systems research. The thrust of this review is to outline emerging areas of application-oriented research within the DL community as well as to provide a reference to researchers seeking to use it in their work for what it does best: statistical pattern recognition with unparalleled learning capacity with the ability to scale with information.

The Amazing Ways Google Uses Artificial Intelligence And Satellite Data To Prevent Illegal Fishing


Google services such as its image search and translation tools use sophisticated machine learning which allow computers to see, listen and speak in much the same way as human do. Machine learning is the term for the current cutting-edge applications in artificial intelligence. Basically, the idea is that by teaching machines to "learn" by processing huge amounts of data they will become increasingly better at carrying out tasks that traditionally can only be completed by human brains. These techniques include "computer vision" – training computers to recognize images in a similar way we do. For example, an object with four legs and a tail has a high probability of being an animal.