Goto

Collaborating Authors

Diagnosis of liver disease using computer-assisted imaging techniques: A Review

arXiv.org Machine Learning

The evidence says that liver disease detection using CAD is one of the most efficient techniques but the presence of better organization of studies and the performance parameters to represent the result analysis of the proposed techniques are pointedly missing in most of the recent studies. Few benchmarked studies have been found in some of the papers as benchmarking makes a reader understand that under which circumstances their experimental results or outcomes are better and useful for the future implementation and adoption of the work. Liver diseases and image processing algorithms, especially in medicine, are the most important and important topics of the day. Unfortunately, the necessary data and data, as they are invoked in the articles, are low in this area and require the revision and implementation of policies in order to gather and do more research in this field. Detection with ultrasound is quite normal in liver diseases and depends on the physician's experience and skills. CAD systems are very important for doctors to understand medical images and improve the accuracy of diagnosing various diseases. In the following, we describe the techniques used in the various stages of a CAD system, namely: extracting features, selecting features, and classifying them. Although there are many techniques that are used to classify medical images, it is still a challenging issue for creating a universally accepted approach.


Machine Learning with Abstention for Automated Liver Disease Diagnosis

arXiv.org Machine Learning

This paper presents a novel approach for detection of liver abnormalities in an automated manner using ultrasound images. For this purpose, we have implemented a machine learning model that can not only generate labels (normal and abnormal) for a given ultrasound image but it can also detect when its prediction is likely to be incorrect. The proposed model abstains from generating the label of a test example if it is not confident about its prediction. Such behavior is commonly practiced by medical doctors who, when given insufficient information or a difficult case, can chose to carry out further clinical or diagnostic tests before generating a diagnosis. However, existing machine learning models are designed in a way to always generate a label for a given example even when the confidence of their prediction is low. We have proposed a novel stochastic gradient based solver for the learning with abstention paradigm and use it to make a practical, state of the art method for liver disease classification. The proposed method has been benchmarked on a data set of approximately 100 patients from MINAR, Multan, Pakistan and our results show that the proposed scheme offers state of the art classification performance.


Combining ultrasound imaging with blood test improves cancer detection by 40%: Study

#artificialintelligence

New Delhi: A team of scientists, including one of Indian origin, has discovered a way to improve the detection of early-stage liver cancer by as much as 40 percent.


Deep Learning in Ultrasound Elastography Imaging

arXiv.org Artificial Intelligence

It is known that changes in the mechanical properties of tissues are associated with the onset and progression of certain diseases. Ultrasound elastography is a technique to characterize tissue stiffness using ultrasound imaging either by measuring tissue strain using quasi-static elastography or natural organ pulsation elastography, or by tracing a propagated shear wave induced by a source or a natural vibration using dynamic elastography. In recent years, deep learning has begun to emerge in ultrasound elastography research. In this review, several common deep learning frameworks in the computer vision community, such as multilayer perceptron, convolutional neural network, and recurrent neural network are described. Then, recent advances in ultrasound elastography using such deep learning techniques are revisited in terms of algorithm development and clinical diagnosis. Finally, the current challenges and future developments of deep learning in ultrasound elastography are prospected.


A Scalable Machine Learning Approach for Inferring Probabilistic US-LI-RADS Categorization

arXiv.org Artificial Intelligence

We propose a scalable computerized approach for large-scale inference of Liver Imaging Reporting and Data System (LI-RADS) final assessment categories in narrative ultrasound (US) reports. Although our model was trained on reports created using a LI-RADS template, it was also able to infer LI-RADS scoring for unstructured reports that were created before the LI-RADS guidelines were established. No human-labelled data was required in any step of this study; for training, LI-RADS scores were automatically extracted from those reports that contained structured LI-RADS scores, and it translated the derived knowledge to reasoning on unstructured radiology reports. By providing automated LI-RADS categorization, our approach may enable standardizing screening recommendations and treatment planning of patients at risk for hepatocellular carcinoma, and it may facilitate AI-based healthcare research with US images by offering large scale text mining and data gathering opportunities from standard hospital clinical data repositories.