HYPE: A High Performing NLP System for Automatically Detecting Hypoglycemia Events from Electronic Health Record Notes

arXiv.org Artificial Intelligence

Hypoglycemia is common and potentially dangerous among those treated for diabetes. Electronic health records (EHRs) are important resources for hypoglycemia surveillance. In this study, we report the development and evaluation of deep learning-based natural language processing systems to automatically detect hypoglycemia events from the EHR narratives. Experts in Public Health annotated 500 EHR notes from patients with diabetes. We used this annotated dataset to train and evaluate HYPE, supervised NLP systems for hypoglycemia detection. In our experiment, the convolutional neural network model yielded promising performance $Precision=0.96 \pm 0.03, Recall=0.86 \pm 0.03, F1=0.91 \pm 0.03$ in a 10-fold cross-validation setting. Despite the annotated data is highly imbalanced, our CNN-based HYPE system still achieved a high performance for hypoglycemia detection. HYPE could be used for EHR-based hypoglycemia surveillance and to facilitate clinicians for timely treatment of high-risk patients.


Predicting readmission risk from doctors' notes

arXiv.org Machine Learning

We develop a model using deep learning techniques and natural language processing on unstructured text from medical records to predict hospital-wide $30$-day unplanned readmission, with c-statistic $.70$. Our model is constructed to allow physicians to interpret the significant features for prediction.


Identification of Predictive Sub-Phenotypes of Acute Kidney Injury using Structured and Unstructured Electronic Health Record Data with Memory Networks

arXiv.org Machine Learning

Acute Kidney Injury (AKI) is a common clinical syndrome characterized by the rapid loss of kidney excretory function, which aggravates the clinical severity of other diseases in a large number of hospitalized patients. Accurate early prediction of AKI can enable in-time interventions and treatments. However, AKI is highly heterogeneous, thus identification of AKI sub-phenotypes can lead to an improved understanding of the disease pathophysiology and development of more targeted clinical interventions. This study used a memory network-based deep learning approach to discover predictive AKI sub-phenotypes using structured and unstructured electronic health record (EHR) data of patients before AKI diagnosis. We leveraged a real world critical care EHR corpus including 37,486 ICU stays. Our approach identified three distinct sub-phenotypes: sub-phenotype I is with an average age of 63.03$ \pm 17.25 $ years, and is characterized by mild loss of kidney excretory function (Serum Creatinne (SCr) $1.55\pm 0.34$ mg/dL, estimated Glomerular Filtration Rate Test (eGFR) $107.65\pm 54.98$ mL/min/1.73$m^2$). These patients are more likely to develop stage I AKI. Sub-phenotype II is with average age 66.81$ \pm 10.43 $ years, and was characterized by severe loss of kidney excretory function (SCr $1.96\pm 0.49$ mg/dL, eGFR $82.19\pm 55.92$ mL/min/1.73$m^2$). These patients are more likely to develop stage III AKI. Sub-phenotype III is with average age 65.07$ \pm 11.32 $ years, and was characterized moderate loss of kidney excretory function and thus more likely to develop stage II AKI (SCr $1.69\pm 0.32$ mg/dL, eGFR $93.97\pm 56.53$ mL/min/1.73$m^2$). Both SCr and eGFR are significantly different across the three sub-phenotypes with statistical testing plus postdoc analysis, and the conclusion still holds after age adjustment.


Artificial intelligence virtual consultant helps deliver better patient care

#artificialintelligence

WASHINGTON, DC (March 8, 2017)--Interventional radiologists at the University of California at Los Angeles (UCLA) are using technology found in self-driving cars to power a machine learning application that helps guide patients' interventional radiology care, according to research presented today at the Society of Interventional Radiology's 2017 Annual Scientific Meeting. The researchers used cutting-edge artificial intelligence to create a "chatbot" interventional radiologist that can automatically communicate with referring clinicians and quickly provide evidence-based answers to frequently asked questions. This allows the referring physician to provide real-time information to the patient about the next phase of treatment, or basic information about an interventional radiology treatment. "We theorized that artificial intelligence could be used in a low-cost, automated way in interventional radiology as a way to improve patient care," said Edward W. Lee, M.D., Ph.D., assistant professor of radiology at UCLA's David Geffen School of Medicine and one of the authors of the study. "Because artificial intelligence has already begun transforming many industries, it has great potential to also transform health care."


Patient trajectory prediction in the Mimic-III dataset, challenges and pitfalls

arXiv.org Machine Learning

Automated medical prognosis has gained interest as artificial intelligence evolves and the potential for computer-aided medicine becomes evident. Nevertheless, it is challenging to design an effective system that, given a patient's medical history, is able to predict probable future conditions. Previous works, mostly carried out over private datasets, have tackled the problem by using artificial neural network architectures that cannot deal with low-cardinality datasets, or by means of non-generalizable inference approaches. We introduce a Deep Learning architecture whose design results from an intensive experimental process. The final architecture is based on two parallel Minimal Gated Recurrent Unit networks working in bi-directional manner, which was extensively tested with the open-access Mimic-III dataset. Our results demonstrate significant improvements of automated medical prognosis, as measured with Recall@k. We summarize our experience as a set of relevant insights for the design of Deep Learning architectures. Our work improves the performance of computer-aided medicine and can serve as a guide in designing artificial neural networks used in prediction tasks.