Collaborating Authors

A Comprehensive Survey of Data Mining-based Fraud Detection Research Artificial Intelligence

This survey paper categorises, compares, and summarises from almost all published technical and review articles in automated fraud detection within the last 10 years. It defines the professional fraudster, formalises the main types and subtypes of known fraud, and presents the nature of data evidence collected within affected industries. Within the business context of mining the data to achieve higher cost savings, this research presents methods and techniques together with their problems. Compared to all related reviews on fraud detection, this survey covers much more technical articles and is the only one, to the best of our knowledge, which proposes alternative data and solutions from related domains.

New Polynomial Classes for Logic-Based Abduction

AAAI Conferences

We address the problem of propositional logic-based abduction, i.e., the problem of searching for a best explanation for a given propositional observation according to a given propositional knowledge base. We give a general algorithm, based on the notion of projection; then we study restrictions over the representations of the knowledge base and of the query, and find new polynomial classes of abduction problems.

Beyond DAGs: Modeling Causal Feedback with Fuzzy Cognitive Maps Artificial Intelligence

Fuzzy cognitive maps (FCMs) model feedback causal relations in interwoven webs of causality and policy variables. FCMs are fuzzy signed directed graphs that allow degrees of causal influence and event occurrence. Such causal models can simulate a wide range of policy scenarios and decision processes. Their directed loops or cycles directly model causal feedback. Their nonlinear dynamics permit forward-chaining inference from input causes and policy options to output effects. Users can add detailed dynamics and feedback links directly to the causal model or infer them with statistical learning laws. Users can fuse or combine FCMs from multiple experts by weighting and adding the underlying fuzzy edge matrices and do so recursively if needed. The combined FCM tends to better represent domain knowledge as the expert sample size increases if the expert sample approximates a random sample. Many causal models use more restrictive directed acyclic graphs (DAGs) and Bayesian probabilities. DAGs do not model causal feedback because they do not contain closed loops. Combining DAGs also tends to produce cycles and thus tends not to produce a new DAG. Combining DAGs tends to produce a FCM. FCM causal influence is also transitive whereas probabilistic causal influence is not transitive in general. Overall: FCMs trade the numerical precision of probabilistic DAGs for pattern prediction, faster and scalable computation, ease of combination, and richer feedback representation. We show how FCMs can apply to problems of public support for insurgency and terrorism and to US-China conflict relations in Graham Allison's Thucydides-trap framework. The appendix gives the textual justification of the Thucydides-trap FCM. It also extends our earlier theorem [Osoba-Kosko2017] to a more general result that shows the transitive and total causal influence that upstream concept nodes exert on downstream nodes.

Adversarial Machine Learning: Perspectives from Adversarial Risk Analysis Artificial Intelligence

Adversarial Machine Learning (AML) is emerging as a major field aimed at the protection of automated ML systems against security threats. The majority of work in this area has built upon a game-theoretic framework by modelling a conflict between an attacker and a defender. After reviewing game-theoretic approaches to AML, we discuss the benefits that a Bayesian Adversarial Risk Analysis perspective brings when defending ML based systems. A research agenda is included.