Which is your favorite Machine Learning Algorithm?

#artificialintelligence

Developed back in the 50s by Rosenblatt and colleagues, this extremely simple algorithm can be viewed as the foundation for some of the most successful classifiers today, including suport vector machines and logistic regression, solved using stochastic gradient descent. The convergence proof for the Perceptron algorithm is one of the most elegant pieces of math I've seen in ML. Most useful: Boosting, especially boosted decision trees. This intuitive approach allows you to build highly accurate ML models, by combining many simple ones. Boosting is one of the most practical methods in ML, it's widely used in industry, can handle a wide variety of data types, and can be implemented at scale.


Dynamic Boltzmann Machines for Second Order Moments and Generalized Gaussian Distributions

arXiv.org Machine Learning

Dynamic Boltzmann Machine (DyBM) has been shown highly efficient to predict time-series data. Gaussian DyBM is a DyBM that assumes the predicted data is generated by a Gaussian distribution whose first-order moment (mean) dynamically changes over time but its second-order moment (variance) is fixed. However, in many financial applications, the assumption is quite limiting in two aspects. First, even when the data follows a Gaussian distribution, its variance may change over time. Such variance is also related to important temporal economic indicators such as the market volatility. Second, financial time-series data often requires learning datasets generated by the generalized Gaussian distribution with an additional shape parameter that is important to approximate heavy-tailed distributions. Addressing those aspects, we show how to extend DyBM that results in significant performance improvement in predicting financial time-series data.



PyData Carolinas 2016 Presentation: Deep Finch? A Continued Comparison of Machine Learning Models to Label Birdsong Syllables

#artificialintelligence

Songbirds provide a model system that neuroscientists use to understand how the brain learns and controls speech and similar skills. Much like infants learning to speak from their parents, songbirds learn their song from a tutor and practice it millions of times before reaching maturity. Also like humans, songbirds have evolved special brain regions for learning and producing their vocalizations. These newly-evolved brain regions in songbirds, known as the song system, are found within broader brain areas shared by birds and humans across evolution. So by studying how the song system works, we can learn about our own brains.


Modeling Documents with Deep Boltzmann Machines

arXiv.org Machine Learning

We introduce a Deep Boltzmann Machine model suitable for modeling and extracting latent semantic representations from a large unstructured collection of documents. We overcome the apparent difficulty of training a DBM with judicious parameter tying. This parameter tying enables an efficient pretraining algorithm and a state initialization scheme that aids inference. The model can be trained just as efficiently as a standard Restricted Boltzmann Machine. Our experiments show that the model assigns better log probability to unseen data than the Replicated Softmax model. Features extracted from our model outperform LDA, Replicated Softmax, and DocNADE models on document retrieval and document classification tasks.