What's New in MATLAB Data Analytics

@machinelearnbot

Use neighborhood component analysis (NCA) to choose features for machine learning models. Manipulate and analyze data that is too big to fit in memory. Perform support vector machine (SVM) and Naive Bayes classification, create bags of decision trees, and fit lasso regression on out-of-memory data. Manipulate, compare, and store text data efficiently . Develop clients for MATLAB Production Server in any programming language that supports HTTP.


Related Datasets in Oracle DV Machine Learning models

#artificialintelligence

Depending on the algorithm/model that generates this dataset metrics present in the dataset will vary. Here is a list of metrics based on the model: Linear Regression, CART numeric, Elastic Net Linear: R-Square, R-Square Adjusted, Mean Absolute Error(MAE), Mean Squared Error(MSE), Relative Absolute Error(RAE), Related Squared Error(RSE), Root Mean Squared Error(RMSE) CART(Classification And Regression Trees), Naive Bayes Classification, Neural Network, Support Vector Machine(SVM), Random Forest, Logistic Regression: Now you know what the Related datasets are and how they can be useful for fine tuning your Machine Learning model or for comparing two different models. .


The Loss Rank Principle for Model Selection

arXiv.org Machine Learning

We introduce a new principle for model selection in regression and classification. Many regression models are controlled by some smoothness or flexibility or complexity parameter c, e.g. the number of neighbors to be averaged over in k nearest neighbor (kNN) regression or the polynomial degree in regression with polynomials. Let f_D^c be the (best) regressor of complexity c on data D. A more flexible regressor can fit more data D' well than a more rigid one. If something (here small loss) is easy to achieve it's typically worth less. We define the loss rank of f_D^c as the number of other (fictitious) data D' that are fitted better by f_D'^c than D is fitted by f_D^c. We suggest selecting the model complexity c that has minimal loss rank (LoRP). Unlike most penalized maximum likelihood variants (AIC,BIC,MDL), LoRP only depends on the regression function and loss function. It works without a stochastic noise model, and is directly applicable to any non-parametric regressor, like kNN. In this paper we formalize, discuss, and motivate LoRP, study it for specific regression problems, in particular linear ones, and compare it to other model selection schemes.


Probabilistic structure discovery in time series data

arXiv.org Machine Learning

Existing methods for structure discovery in time series data construct interpretable, compositional kernels for Gaussian process regression models. While the learned Gaussian process model provides posterior mean and variance estimates, typically the structure is learned via a greedy optimization procedure. This restricts the space of possible solutions and leads to over-confident uncertainty estimates. We introduce a fully Bayesian approach, inferring a full posterior over structures, which more reliably captures the uncertainty of the model.


MESA: Maximum Entropy by Simulated Annealing

arXiv.org Artificial Intelligence

Probabilistic reasoning systems combine different probabilistic rules and probabilistic facts to arrive at the desired probability values of consequences. In this paper we describe the MESA-algorithm (Maximum Entropy by Simulated Annealing) that derives a joint distribution of variables or propositions. It takes into account the reliability of probability values and can resolve conflicts between contradictory statements. The joint distribution is represented in terms of marginal distributions and therefore allows to process large inference networks and to determine desired probability values with high precision. The procedure derives a maximum entropy distribution subject to the given constraints. It can be applied to inference networks of arbitrary topology and may be extended into a number of directions.