Goto

Collaborating Authors

Modern Reinforcement Learning: Actor-Critic Methods

#artificialintelligence

Modern Reinforcement Learning: Actor-Critic Methods Udemy Coupon ED How to Implement Cutting Edge Artificial Intelligence Research Papers in the Open AI Gym Using the PyTorch Framework Get Udemy Course What you'll learn How to code policy gradient methods in PyTorch How to code Deep Deterministic Policy Gradients (DDPG) in PyTorch How to code Twin Delayed Deep Deterministic Policy Gradients (TD3) in PyTorch How to code actor critic algorithms in PyTorch How to implement cutting edge artificial intelligence research papers in Python Description In this advanced course on deep reinforcement learning, you will learn how to implement policy gradient, actor critic, deep deterministic policy gradient (DDPG), and twin delayed deep deterministic policy gradient (TD3) algorithms in a variety of challenging environments from the Open AI gym. The course begins with a practical review of the fundamentals of reinforcement learning, including topics such as: The Bellman Equation Markov Decision Processes Monte Carlo Prediction Temporal Difference Prediction TD(0) Temporal Difference Control with Q Learning And moves straight into coding up our first agent: a blackjack playing artificial intelligence. From there we will progress to teaching an agent to balance the cart pole using Q learning. After mastering the fundamentals, the pace quickens, and we move straight into an introduction to policy gradient methods. We cover the REINFORCE algorithm, and use it to teach an artificial intelligence to land on the moon in the lunar lander environment from the Open AI gym.


Resource Constrained Deep Reinforcement Learning

arXiv.org Machine Learning

In urban environments, supply resources have to be constantly matched to the "right" locations (where customer demand is present) so as to improve quality of life. For instance, ambulances have to be matched to base stations regularly so as to reduce response time for emergency incidents in EMS (Emergency Management Systems); vehicles (cars, bikes, scooters etc.) have to be matched to docking stations so as to reduce lost demand in shared mobility systems. Such problem domains are challenging owing to the demand uncertainty, combinatorial action spaces (due to allocation) and constraints on allocation of resources (e.g., total resources, minimum and maximum number of resources at locations and regions). Existing systems typically employ myopic and greedy optimization approaches to optimize allocation of supply resources to locations. Such approaches typically are unable to handle surges or variances in demand patterns well. Recent research has demonstrated the ability of Deep RL methods in adapting well to highly uncertain environments. However, existing Deep RL methods are unable to handle combinatorial action spaces and constraints on allocation of resources. To that end, we have developed three approaches on top of the well known actor critic approach, DDPG (Deep Deterministic Policy Gradient) that are able to handle constraints on resource allocation. More importantly, we demonstrate that they are able to outperform leading approaches on simulators validated on semi-real and real data sets.


Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning

Neural Information Processing Systems

Off-policy model-free deep reinforcement learning methods using previously collected data can improve sample efficiency over on-policy policy gradient techniques. On the other hand, on-policy algorithms are often more stable and easier to use. This paper examines, both theoretically and empirically, approaches to merging on- and off-policy updates for deep reinforcement learning. Theoretical results show that off-policy updates with a value function estimator can be interpolated with on-policy policy gradient updates whilst still satisfying performance bounds. Our analysis uses control variate methods to produce a family of policy gradient algorithms, with several recently proposed algorithms being special cases of this family. We then provide an empirical comparison of these techniques with the remaining algorithmic details fixed, and show how different mixing of off-policy gradient estimates with on-policy samples contribute to improvements in empirical performance. The final algorithm provides a generalization and unification of existing deep policy gradient techniques, has theoretical guarantees on the bias introduced by off-policy updates, and improves on the state-of-the-art model-free deep RL methods on a number of OpenAI Gym continuous control benchmarks.


Modern Reinforcement Learning: Actor-Critic Methods

#artificialintelligence

In this advanced course on deep reinforcement learning, you will learn how to implement policy gradient, actor critic, deep deterministic policy gradient (DDPG), and twin delayed deep deterministic policy gradient (TD3) algorithms in a variety of challenging environments from the Open AI gym. From there we will progress to teaching an agent to balance the cart pole using Q learning. After mastering the fundamentals, the pace quickens, and we move straight into an introduction to policy gradient methods. We cover the REINFORCE algorithm, and use it to teach an artificial intelligence to land on the moon in the lunar lander environment from the Open AI gym. Next we progress to coding up the one step actor critic algorithm, to again beat the lunar lander.


An Off-policy Policy Gradient Theorem Using Emphatic Weightings

arXiv.org Machine Learning

Policy gradient methods are widely used for control in reinforcement learning, particularly for the continuous action setting. There have been a host of theoretically sound algorithms proposed for the on-policy setting, due to the existence of the policy gradient theorem which provides a simplified form for the gradient. In off-policy learning, however, where the behaviour policy is not necessarily attempting to learn and follow the optimal policy for the given task, the existence of such a theorem has been elusive. In this work, we solve this open problem by providing the first off-policy policy gradient theorem. The key to the derivation is the use of $emphatic$ $weightings$. We develop a new actor-critic algorithm$\unicode{x2014}$called Actor Critic with Emphatic weightings (ACE)$\unicode{x2014}$that approximates the simplified gradients provided by the theorem. We demonstrate in a simple counterexample that previous off-policy policy gradient methods$\unicode{x2014}$particularly OffPAC and DPG$\unicode{x2014}$converge to the wrong solution whereas ACE finds the optimal solution.